2 Grenzwerte und Stetigkeit

Wir benutzen die Bezeichnungen $\mathbb{N} = \{0, 1, 2...\}$ für die Menge der natürlichen Zahlen und $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ für die Menge der positiven ganzen Zahlen.

Definition 2.1. (Konvergenz). Sei (X, d) ein metrischer Raum. Sei $(x_k)_{k \in \mathbb{N}}$ eine Folge in X und $x \in X$ beliebig. Man sagt, dass $(x_k)_{k \in \mathbb{N}}$ gegen x konvergiert und schreibt dafür $\lim_{k \to \infty} x_k = x$, falls für jede Umgebung U von x ein Index $k_0 \in \mathbb{N}$ existiert mit $x_k \in U$ für alle $k \geq k_0$.

Nach Definition des Umgebungsbegriffs bedeutet $\lim_{k\to\infty} x_k = x$ genau, dass für jedes $\epsilon > 0$ ein $k_0 \in \mathbb{N}$ existiert mit $d(x_k, x) < \epsilon$ für alle $k \ge k_0$.

Bemerkung.

Äquivalente Metriken (siehe Definition 1.13) liefern dieselben konvergenten Folgen.

Lemma 2.2. Sei $(x_k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{R}^n und sei $a\in\mathbb{R}^n$ mit

$$x_k = (x_{k1}, \dots, x_{kn}) \ (k \in \mathbb{N}) \ und \ a = (a_1, \dots, a_n).$$

Dann gilt $\lim_{k\to\infty} x_k = a$ in \mathbb{R}^n genau dann, wenn $\lim_{k\to\infty} x_{k\nu} = a_{\nu}$ in \mathbb{R} ist für jedes $\nu = 1, \ldots, n$.

Beweis. Sei $\lim_{k\to\infty} x_k = a$ in \mathbb{R}^n und sei $\nu \in \{1,\ldots,n\}$. Dann gibt es zu gegebenen $\epsilon > 0$ ein $k_0 \in \mathbb{N}$ mit $||x_k - a|| < \epsilon$ für alle $k \ge k_0$. Nach Definition der euklidischen Norm $||\cdot||$ auf \mathbb{R}^n gilt dann auch $||x_{k\nu} - a_{\nu}|| \le ||x_k - a||| < \epsilon$ für alle $k \ge k_0$.

Sei umgekehrt $\lim_{k\to\infty} x_{k\nu} = a_{\nu}$ in \mathbb{R} für $\nu = 1, \ldots, n$ und sei $\epsilon > 0$. Dann existiert für jedes $\nu = 1, \ldots, n$ ein $k_{\nu} \in \mathbb{N}$ mit $|x_{k\nu} - a_{\nu}| < \frac{\epsilon}{\sqrt{n}}$ für alle $k \geq k_{\nu}$. Für $k \geq \max\{k_1, \ldots, k_n\}$ folgt, dass $||x_k - a|| = \left(\sum_{\nu=1}^n |x_{k\nu} - a_{\nu}|^2\right)^{1/2} < \epsilon$.

Genauso sieht man, dass eine Folge $(x_k)_{k\in\mathbb{N}}$ in \mathbb{C}^n gegen ein $a\in\mathbb{C}^n$ konvergiert, wenn sie komponentenweise gegen a konvergiert.

Satz 2.3. Sei (X,d) ein metrischer Raum und sei $M \subset X$ eine Teilmenge. Dann ist

$$\overline{M} = \{x \in X; \text{ es gibt eine Folge } (x_k)_{k \in \mathbb{N}} \text{ in } M \text{ mit } \lim_{k \to \infty} x_k = x\}.$$

Beweis. Ist $x \in \overline{M}$, so gibt es für jedes $k \in \mathbb{N}^*$ ein $x_k \in B_{\frac{1}{k}}(x) \cap M$. Dann ist $(x_k)_{k \in \mathbb{N}^*}$ eine Folge in M mit $\lim_{k \to \infty} x_k = x$. Sei umgekehrt $(x_k)_{k \in \mathbb{N}}$ eine Folge in M mit $\lim_{k \to \infty} x_k = x$ und sei U eine Umgebung von x. Nach Definition der Konvergenz gibt es ein $k_0 \in \mathbb{N}$ mit $x_k \in U$ für alle $k \geq k_0$. Insbesondere ist $U \cap M \neq \emptyset$.

Definition 2.4. Sei (X, d) ein metrischer Raum

(a) Eine Folge $(x_k)_{k\in\mathbb{N}}$ heißt Cauchy-Folge, falls für jedes $\epsilon>0$ ein $k_0\in\mathbb{N}$ existiert mit $d(x_k,x_\ell)<\epsilon$ für alle $k,\ell\geq k_0$.

- (b) Der metrische Raum (X, d) heißt vollständig, falls jede Cauchy-Folge in (X, d) konvergiert.
- (c) Ein normierter Raum $(V, \|\cdot\|)$ heißt vollständig (oder Banachraum), falls V mit der induzierten Metrik $d(x, y) = \|x y\|$ vollständig ist.

Satz 2.5. Die normierten Räume \mathbb{R}^n und \mathbb{C}^n sind vollständig.

Beweis. Sei K der Körper der reellen oder komplexen Zahlen und sei $(x_k)_{k\geq 0}$ eine Cauchy-Folge in K^n mit

$$x_k = (x_{k1}, \dots, x_{kn}) \quad (k \ge 0).$$

Da für $\nu = 1, ..., n$ und $k, \ell \in \mathbb{N}$ die Abschätzung $|x_{\ell\nu} - x_{\ell\nu}| \le ||x_k - x_{\ell}||$ gilt, sind die Folgen $(x_{k\nu})_{k \ge 0}$ ($\nu = 1, ..., n$) Cauchy-Folgen in K. Da K vollständig ist, existieren die Limiten

$$a_{\nu} = \lim_{k \to \infty} x_{k\nu} \quad (\nu = 1, \dots, n)$$

in K. Aus Lemma 2.2 folgt, dass die Folge $(x_k)_{k\geq 0}$ in K^n gegen (a_1,\ldots,a_n) konvergiert.

In metrischen Räumen gilt eine Verallgemeinerung des Intervallschachtelungsprinzips.

Satz 2.6. (Schachtelungsprinzip). Sei (X, d) ein vollständiger metrischer Raum und sei $(A_k)_{k\geq 0}$ eine Folge abgeschlossener Mengen in X mit

$$\emptyset \neq A_{k+1} \subset A_k$$

für alle $k \ge 0$ und so, dass die Folge der durch

$$diam(A_k) = \sup\{d(x, y); \ x, y \in A_k\}$$

definierten Durchmesser der Mengen A_k gegen 0 konvergiert. Dann gibt es ein $x \in X$ mit $\{x\} = \bigcap_{k \geq 0} A_k$.

Beweis. Wähle für jedes $k \in \mathbb{N}$ ein Element $x_k \in A_k$. Sei $\epsilon > 0$. Nach Voraussetzung existiert ein $k_0 \in \mathbb{N}$ mit diam $(A_k) < \epsilon$ für alle $k \ge k_0$. Dann ist $d(x_k, x_\ell) < \epsilon$ für alle $k, \ell \ge k_0$. Also ist $(x_k)_{k \ge 0}$ eine Cauchy-Folge in (X, d). Wegen der vorausgesetzten Vollständigkeit von (X, d) existiert der Limes $x = \lim_{k \to \infty} x_k$ in X. Nach Satz 2.3 (siehe auch Korollar 1.18) folgt aus der Abgeschlossenheit der Mengen A_k und der Bedingung, dass die Mengen A_k mit wachsendem k kleiner werden, dass

$$x = \lim_{\substack{\ell \to \infty \\ \ell \ge k}} x_{\ell} \in A_k$$

ist für alle $k \in \mathbb{N}$. Ist $y \in X$ ein weiteres Element mit $y \in A_k$ für alle $k \in \mathbb{N}$, so gilt $d(x,y) \leq \operatorname{diam}(A_k)$ für alle k und damit d(x,y) = 0. Also besteht der Durchschnitt aller Mengen A_k genau aus dem einen Element x.

Definition 2.7. (Stetigkeit) Seien (X, d), (Y, d') metrische Räume, $D \subset X$ eine Teilmenge und $f : D \to Y$ eine Abbildung.

(a) Für $a \in \overline{D}$ und $c \in Y$ schreibt man

$$\lim_{x \to a} f(x) = c,$$

falls $\lim_{k\to\infty} f(x_k) = c$ ist für jede Folge $(x_k)_{k>0}$ in X mit $\lim_{k\to\infty} x_k = a$.

(b) Die Funktion $f: D \to Y$ heißt stetig in einem Punkt $a \in D$, falls

$$\lim_{x \to a} f(x) = f(a)$$

ist.

(c) Die Funktion $f: D \to Y$ heißt stetig, falls sie in jedem Punkt $a \in D$ stetig ist.

Man sieht sehr leicht, dass eine Funktion $f: D \to Y$ wie in der letzten Definition stetig ist (oder stetig in einem Punkt $a \in D$ ist) genau dann, wenn f als Funktion von D versehen mit der Relativmetrik von X nach Y dieselbe Eigenschaft hat (siehe Beispiel 1.2 (c)).

Satz 2.8. Sind $f: X \to Y$, $g: Y \to Z$ stetige Abbildungen zwischen metrischen Räumen, so ist auch die Komposition $g \circ f: X \to Z$ stetig.

Beweis. Ist $(x_k)_{k\geq 0}$ eine konvergente Folge in X mit $\lim_{k\to\infty} x_k = a$, so gilt $\lim_{x\to\infty} f(x_k) = f(a)$ in Y, da f stetig ist, und $\lim_{k\to\infty} g \circ f(x_k) = \lim_{k\to\infty} g(f(x_k)) = g(f(a))$ in Z, da g stetig ist.

Lemma 2.9. Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$. Die Koordinatenprojektionen

$$\pi_{\nu}: K^n \to K, \ (x_i)_{i=1}^n \mapsto x_{\nu}(\nu = 1, \dots, n)$$

sind stetig.

Beweis. Nach Lemma 2.2 ist die Konvergenz einer Folge in \mathbb{R}^n (und genauso in \mathbb{C}^n) äquivalent zur komponentenweisen Konvergenz. Insbesondere impliziert Konvergenz in K^n komponentenweise Konvergenz. Das ist äquivalent zur Stetigkeit der Koordinatenprojektionen π_1, \ldots, π_n .

Als Folgerung erhält man, dass eine Abbildung mit Werten in K^n ($K = \mathbb{R}$ oder $K = \mathbb{C}$) genau dann stetig ist, wenn alle Koordinatenfunktionen stetig sind.

Satz 2.10. Sei (X,d) ein metrischer Raum und $f: X \to K^n$ $(K = \mathbb{R} \ oder \ K = \mathbb{C})$ eine Abbildung. Die Abbildung f ist stetig genau dann, wenn alle ihre Koordinatenfunktionen $f_{\nu} = \pi_{\nu} \circ f: X \to K$ stetig sind.

Beweis. Ist $f: X \to K^n$ stetig, so sind die Koordinatenfunktionen $\pi_{\nu} \circ f: X \to K \ (\nu = 1, \dots, n)$ nach Satz 2.8 und Lemma 2.9 als Kompositionen stetiger Abbildungen stetig.

Seien umgekehrt alle Koordinatenfunktionen $\pi_{\nu} \circ f: X \to K(\nu = 1, ..., n)$ stetig. Ist $(x_k)_{k \geq 0}$ eine konvergente Folge in X mit $\lim_{k \to \infty} x_k = a$, so konvergiert die Folge $(f(x_k))_{k \geq 0}$ wegen

$$\lim_{k \to \infty} \pi_{\nu}(f(x_k)) = \lim_{k \to \infty} (\pi_{\nu} \circ f)(x_k) = (\pi_{\nu} \circ f)(a) = \pi_{\nu}(f(a)) \quad (1 \le \nu \le n)$$

komponentenweise in K^n gegen f(a). Nach Lemma 2.2 gilt auch $\lim_{k\to\infty} f(x_k) = f(a)$ in K^n .

Die Grenzwertsätze in \mathbb{R} (oder \mathbb{C}) besagen gerade, dass die algebraischen Operationen Addition, Multiplikation, Quotientenbildung stetige Abbildungen zwischen geeignet definierten metrischen Räumen sind.

Satz 2.11. Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$ und $K^* = K \setminus \{0\}$. Versieht man $K^2 = K \times K$ mit der euklidischen Metrik, so sind die Abbildungen

(a) add:
$$K \times K \to K$$
, $(x, y) \mapsto x + y$,

(b)
$$m: K \times K, (x, y) \mapsto x \cdot y,$$

(c)
$$q: K \times K^* \to K, \ (x,y) \mapsto \frac{x}{y}$$

stetig.

Beweis. Sei $((x_k, y_k))_{k\geq 0}$ eine Folge mit Limes (x, y) in $K\times K$ (bzw. $K\times K^*$). Nach Lemma 2.2 gilt dann $\lim_{k\to\infty} x_k = x$, $\lim_{k\to\infty} y_k = y$ in K und $y_k \neq 0 \neq y$ im Falle (c). Nach den Grenzwertsätzen aus der Analysis I folgt, dass $\lim_{k\to\infty} (x_k + y_k) = x + y$, $\lim_{k\to\infty} (x_k \cdot y_k) = x \cdot y$ und im Falle (c) auch $\lim_{k\to\infty} \frac{x_k}{y_k} = \frac{x}{y}$ ist. Nach Definition 2.7 bedeutet dies genau, dass die angegebenen drei Abbildungen stetig sind.

Korollar 2.12. Sei (X,d) ein metrischer Raum und seien $f,g:X\to K$ $(K=\mathbb{R}\ oder\ K=\mathbb{C})$ stetig. Dann sind auch

(a)
$$f+g:X\to K,\ x\mapsto f(x)+g(x),\ f\cdot g:X\to K,\ x\mapsto f(x)g(x)$$
 und

(b)
$$\frac{f}{g}: X_0 = \{x \in X; \ g(x) \neq 0\} \to K, \ x \mapsto \frac{f(x)}{g(x)}$$

stetig.

Beweis. Nach Satz 2.10 sind die Abbildungen

$$(f,g): X \to K^2, \ x \mapsto (f(x),g(x))$$

und, wenn man $K \times K^*$ mit der Relativmetrik von $K \times K$ versieht,

$$(f,g), X_0 \to K \times K^*, x \mapsto (f(x), g(x))$$

stetig. Nach den Sätzen 2.8 und 2.11 sind dann auch

$$f+g = \operatorname{add} \circ (f,g), \ f \cdot g = m \circ (f,g), \ \frac{f}{g} = q \circ (f,g) : X_0 \to K$$

als Kompositionen stetiger Abbildungen stetig.

Beispiel 2.13. (a) Ein Monom vom Grade r auf \mathbb{R}^n ist eine Abbildung der Form

$$\mathbb{R}^n \to \mathbb{R}, \ (x_1, \dots, x_n) \mapsto x_1^{k_1} \ x_2^{k_2} \cdots x_n^{k_n},$$

wobei $k_1, \ldots, k_n \in \mathbb{N}$ feste Zahlen sind mit $k_1 + \ldots + k_n = r$. Eine Polynomfunktion vom Grade $\leq r$ auf \mathbb{R}^n ist eine Abbildung der Form

$$F: \mathbb{R}^n \to \mathbb{R}, \ F(x_1, \dots, x_n) = \sum_{\substack{(k_1, \dots, k_n) \in \mathbb{N}^n \\ k_1 + \dots + k_n \le r}} c_{k_1 \dots k_n} x_1^{k_1} \dots x_n^{k_n},$$

wobei $c_{k_1...k_n}$ fest gegebene reelle Zahlen seien. Nach Lemma 2.9 und Korollar 2.12 (endlich oft angewendet) sind diese Funktionen stetig.

(b) Ist V ein normierter Vektorraum über $K = \mathbb{R}$ oder $K = \mathbb{C}$, so ist die Abbildung $\|\cdot\| : V \to \mathbb{R}$, $x \mapsto \|x\|$ stetig. Dies folgt direkt aus der Gültigkeit der Dreiecksungleichung nach unten (siehe die Bemerkung zu Definition 1.3)

$$| \|x\| - \|y\| | \le \|x - y\| \quad (x, y \in V).$$

Wie in der Analysis I kann man auch die Stetigkeit von Abbildungen zwischen metrischen Räumen mit einem geeigneten ϵ - δ -Kriterium beschreiben.

Satz 2.14. $(\epsilon$ - δ -Kriterium) Sei $f: X \to Y$ eine Abbildung zwischen metrischen Räumen und sei $a \in X$. Die Abbildung f ist stetig in a genau dann, wenn zu jedem $\epsilon > 0$ ein $\delta > 0$ existiert mit

$$f(B_{\delta}(a)) \subset B_{\epsilon}(f(a)).$$

Beweis. Sei f stetig in a und sei $\epsilon > 0$. Gäbe es kein δ mit der behaupteten Eigenschaft, so würde zu jedem $k \in \mathbb{N}^*$ ein Element $x_k \in B_{\frac{1}{k}}(a)$ existieren mit $f(x_k) \notin B_{\epsilon}(f(a))$. Dann würde $(x_k)_{k \geq 1}$ gegen a in X konvergieren, aber $(f(x_k))_{k \geq 1}$, würde nicht in Y gegen f(a) konvergieren. Dies widerspricht der vorausgesetzten Stetigkeit von f in a.

Sei umgekehrt das angegebene ϵ - δ -Kriterium im Punkt a erfüllt. Konvergiert $(x_k)_{k\geq 0}$ in X gegen a und ist $\epsilon > 0$, so gibt es nach Voraussetzung ein $\delta > 0$ mit $f(B_{\delta}(a)) \subset B_{\epsilon}(f(a))$. Zu dem so gewählten $\delta > 0$ gibt es ein $k_0 \in \mathbb{N}$ mit $x_k \in B_{\delta}(a)$ für alle $k \geq k_0$. Dann ist $d(f(x_k), f(a)) < \epsilon$ für alle $k \geq k_0$. Also konvergiert $(f(x_k))_{k\geq 0}$ in Y gegen f(a), und die Stetigkeit von f in a ist gezeigt.

Beispiel 2.15. Sei (X, d) ein metrischer Raum und $\emptyset \neq A \subset X$ eine Menge. Für $x \in X$ definiert man den Abstand von x zu A durch

$$d(x, A) = \inf_{a \in A} d(x, a).$$

Die Funktion $X \to \mathbb{R}$, $x \mapsto d(x, A)$ ist stetig. Es gilt sogar

$$|d(x, A) - d(y, A)| \le d(x, y)$$

für alle $x, y \in X$. Zum Beweis seien $x, y \in X$ beliebig. Dann gilt für alle $a \in A$

$$d(x,a) \le d(x,y) + d(y,a).$$

Indem man auf beiden Seiten das Infinum bildet, erhält man

$$\inf_{a \in A} d(x, a) \le \inf_{a \in A} (d(x, y) + d(y, a)) = d(x, y) + \inf_{a \in A} d(y, a).$$

oder äquivalent

$$d(x, A) - d(y, A) \le d(x, y).$$

Durch vertauschen von x, y erhält man, dass auch

$$d(y, A) - d(x, A) \le d(y, x) = d(x, y)$$

gilt. Hieraus folgt die behauptete Ungleichung und damit auch die Stetigkeit der Abbildung $X \to \mathbb{R}$, $x \mapsto d(x, A)$.

Definition 2.16. (Gleichmäßige Konvergenz)

Seien X, Y metrische Räume und seien $f_n : X \to Y$ $(n \in \mathbb{N}), f : X \to Y$ Abbildungen. Die Folge $(f_n)_{n \geq 0}$ konvergiert definitionsgemäß gleichmäßig auf X gegen die Abbildung f, falls für jedes $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert so, dass für alle $n \geq n_0$ die Ungleichung $d(f_n(x), f(x)) < \epsilon$ für alle $x \in X$ gilt.

Offensichtlich ist die definierende Bedingung für die gleichmäßige Konvergenz der Folge $(f_n)_{n\geq 0}$ gegen f äquivalent dazu, dass zu jedem $\epsilon>0$ ein $n_0\in\mathbb{N}$ existiert mit $\sup_{x\in X}d(f_n(x),\ f(x))<\epsilon$ für alle $n\geq n_0$.

Satz 2.17. Seien X, Y metrische Räume und seien $f_n : X \to Y \ (n \in \mathbb{N}), \ f : X \to Y \ Abbildungen.$ Sind alle $f_n \ (n \in \mathbb{N})$ stetig und konvergiert $(f_n)_{n \in \mathbb{N}}$ gleichmäßig auf X gegen f, so ist auch $f : X \to Y$ stetig.

Beweis. Sei $x_0 \in X$ und sei $\epsilon > 0$. Da $(f_n)_{n \in \mathbb{N}}$ gleichmäßig gegen f konvergiert, gibt es ein $n_0 \in \mathbb{N}$ mit $d(f_n(x), f(x)) < \frac{\epsilon}{3}$ für alle $x \in X$ und alle $n \ge n_0$. Da f_{n_0} stetig ist in x_0 , gibt es nach dem ϵ - δ -Kriterium ein $\delta > 0$ mit $f_{n_0}(B_\delta(x_0)) \subset B_{\frac{\epsilon}{3}}(f_{n_0}(x_0))$. Mit der Dreiecksungleichung folgt für alle $x \in B_\delta(x_0)$, dass

$$d(f(x), f(x_0)) \le d(f(x), f_{n_0}(x)) + d(f_{n_0}(x), f_{n_0}(x_0)) + d(f_{n_0}(x_0), f(x_0))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

gilt. Also ist f stetig in x_0 .

Für die Stetigkeit linearer Abbildungen zwischen normierten Vektorräumen gibt es andere nützliche Kriterien.

Satz 2.18. Seien V, W normierte K-Vektorräume über $K = \mathbb{R}$ oder $K = \mathbb{C}$. Eine lineare Abbildung $A: V \to W$ ist stetig genau dann, wenn es eine Konstante $c \geq 0$ gibt mit $||Ax|| \leq c||x||$ für alle $x \in V$.

Beweis. Sei A stetig. Da A stetig ist im Punkt x=0 mit A0=0, gibt es nach dem ϵ -δ-Kriterium (Satz 2.14) zu $\epsilon=1$ ein $\delta>0$ mit $AB_{\delta}(0)\subset B_1(0)$. Da für alle $x\in V\setminus\{0\}$

$$\|Ax\| = \frac{2}{\delta} \|x\| \|A\left(\frac{\delta}{2} \frac{x}{\|x\|}\right)\| \le \frac{2}{\delta} \|x\|$$

gilt, ist das behauptete Stetigkeitskriterium erfüllt mit $c=\frac{2}{\delta}$. Ist umgekehrt c>0 eine Konstante wie im Satz und sind $x_0 \in V$, $\epsilon>0$ gegeben, so gilt

$$||Ax - Ax_0|| = ||A(x - x_0)|| \le c||x - x_0|| < \epsilon$$

für alle $x \in V$ mit $||x - x_0|| < \frac{\epsilon}{c}$. Nach dem ϵ - δ -Kriterium ist A stetig in jedem Punkt $x_0 \in V$.

Beispiele.

(a) Versieht man den \mathbb{R} -Vektorraum $C[a,b] = \{f : [a,b] \to \mathbb{R}; f \text{ ist stetig}\}$ mit der Norm (siehe Beispiel 1.7)

$$||f||_{[a,b]} = \sup_{x \in [a,b]} |f(x)|,$$

so definiert

$$I: C[a,b] \to \mathbb{R}, \ f \to \int_a^b f \, dt$$

eine stetige lineare Abbildung. In der Analysis I wurde gezeigt, dass das Riemann-Integral linear ist. Die Stetigkeit von I folgt mit Satz 2.18 aus der Gültigkeit der Abschätzung

$$|I(f)| = |\int_a^b f \, dt| \le \int_a^b |f| dt \le \int_a^b ||f||_{[a,b]} dt = (b-a)||f||_{[a,b]},$$

die ebenfalls in der Analysis I (Satz 16.13 (b) in [EAI]) für alle stetigen Funktionen $f \in C[a, b]$ gezeigt wurde.

(b) Sei der \mathbb{R} -Vektorraum $C^1[0,1] = \{f; \ f: [0,1] \to \mathbb{R} \ \text{ist stetig differenzierbar} \}$ mit der Norm $\|\cdot\|_{[0,1]}$ aus Teil (a) versehen. Dann ist die Abbildung

$$D: C^1[0,1] \to C[0,1], f \mapsto f'$$

linear, aber nicht stetig. Die Linearität ist klar. Da die Funktionen $f_n \in C^1[0,1]$ definiert durch $f_n(x) = x^n$ die Norm $||f_n||_{[0,1]} = 1$ besitzen, aber die Folge der Normen

$$||f'_n||_{[0,1]} = ||nx^{n-1}||_{[0,1]} = n \quad (n \ge 1)$$

unbeschränkt ist, folgt mit Satz 2.18, dass die Abbildung D nicht stetig ist.

Definition 2.19. Seien V, W normierte K-Vektorräume und $A: V \to W$ eine stetige lineare Abbildung. Dann heißt

$$||A|| = \sup\{||Ax||; ||x|| \le 1\}$$

die Norm oder Operatorraum von A.

Nach Satz 2.18 ist $||A|| \in [0, \infty)$. Es ist nicht schwieirig zu zeigen, dass

$$||A|| = \sup\{||Ax||; ||x|| < 1\} = \sup\{||Ax||; ||x|| = 1\}$$

gilt und dass die Operatornorm wirklich eine Norm auf dem K-Vektorraum

$${A: V \to W; A \text{ ist linear und stetig}}$$

definiert.

Lemma 2.20. Sei $K = \mathbb{R}$ oder \mathbb{C} . Dann ist jede lineare Abbildung $A: K^n \to K^m$ stetig.

Beweis. Da die konvergenten Folgen bezüglich der Summenmetrik $d_1(x,y) = ||x-y||_1$ und der euklidischen Metrik $d_2(x,y) = ||x-y||_2$ sowohl in K^n als auch in K^m dieselben sind (Bemerkung 1.6), genügt es zu zeigen, dass $A: K^n \to K^m$ bezüglich der Summennormen auf K^n und K^m stetig ist. Da für alle $x = (x_i)_{i=1}^n$

$$||Ax||_1 = \left\| \sum_{i=1}^n x_i A e_i \right\|_1 \le \sum_{i=1}^n |x_i| \, ||Ae_i|| \le \left(\max_{i=1,\dots,n} ||Ae_i|| \right) ||x||_1$$

gilt, folgt dies direkt aus Satz 2.18. Hierbei bezeichnet $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ den *i*-ten kanonischen Einheitsvektor in K^n .

Für $A = (a_{ij}) \in M(m \times n, K)$ sei $M_A : K^n \to K^m, x \mapsto Ax = \left(\sum_{j=1}^n a_{ij}x_j\right)_{1 \le i \le m}$ der Operator der Multiplikation mit der $(m \times n)$ -Matrix A. Wie immer, wenn nicht ausdrücklich etwas anderes vorausgesetzt wird, seien die K-Vektorräume K^n, K^m mit ihrer euklidischen Norm versehen.

Lemma 2.21. Seien $m, n \in \mathbb{N}^*$. Durch

$$\|\cdot\|: M(m \times n, K) \to \mathbb{R}, \ \|A\| = \|M_A\| = \sup_{\|x\| \le 1} \|M_A x\|$$

wird eine Norm auf $M(m \times n, K)$ definiert. Es gilt

$$||Ax|| \le ||A|| \, ||x||$$

für alle $A \in M(m \times n, K)$ und $x \in K^n$.

Beweis. Nach Lemma 2.20 ist $||A|| \in [0,\infty)$. Für $A,B \in M(m \times n,K)$ und $\lambda \in K$ gilt

$$\|\lambda A\| = \sup_{\|x\| \le 1} \|(\lambda A)x\| = \sup_{\|x\| \le 1} |\lambda| \|Ax\| = |\lambda| \sup_{\|x\| \le 1} \|Ax\| = |\lambda| \|A\|$$

und

$$||A + B|| = \sup_{\|x\| \le 1} ||(A + B)x|| \le \sup_{\|x\| \le 1} (||Ax|| + ||Bx||) \le \sup_{\|x\| \le 1} ||Ax|| + \sup_{\|x\| \le 1} ||Bx|| = ||A|| + ||B||.$$

Für $x \in K^n \setminus \{0\}$ gilt

$$||Ax|| = ||A\left(\frac{x}{||x||}\right)|| \, ||x|| \le ||A|| \, ||x||.$$

Insbesondere ist A=0 genau dann, wenn ||A||=0 ist. Damit sind alle Behauptungen bewiesen.

Bemerkung 2.22. Für $A = (a_{ij}) \in M(m \times n, K)$ gilt

$$\max\{|a_{ij}|; \ 1 \le i \le m, \ 1 \le j \le n\} \le ||A|| \le \sqrt{mn} \max\{|a_{ij}|; \ 1 \le i \le m, \ 1 \le j \le n\}.$$

Zum Beweis der ersten Ungleichung beachte man, dass für alle $1 \leq i \leq m$ und $1 \leq j \leq n$ gilt

$$||A|| \ge ||Ae_i|| = ||(a_{\mu i})_{1 < \mu < m}|| \ge |a_{ij}|.$$

Sei $\alpha = \max\{|a_{ij}|; 1 \le i \le m, 1 \le j \le n\}$. Für $x = (x_i) \in K^n$ mit $||x|| \le 1$ und $y = (y_i) = Ax \in K^m$ folgt mit Bemerkung 1.6 und Beispiel 1.5 (a), dass

$$|y_i| = \left| \sum_{j=1}^n a_{ij} x_j \right| \le \sum_{j=1}^n |a_{ij}| |x_j| \le \|(a_{ij})_{1 \le j \le n}\|_2 \|x\|_2$$

$$\leq \sqrt{n} \max_{j=1,\dots,n} |a_{ij}| \leq \sqrt{n} \alpha$$

für alle $i=1,\ldots,m$ gilt. Also ist $\|y\|_2 \leq \sqrt{m} \max_{i=1,\ldots,m} |y_i| \leq \sqrt{nm} \alpha$. Damit ist auch die zweite Ungleichung bewiesen. Als Anwendung dieser beiden Ungleichungen erhält man, dass eine Folge von Matrizen in $M(m\times n,K)$ genau dann konvergiert, wenn sie koeffizientenweise konvergiert, und dass eine Funktion von einem metrischen Raum mit Werten in $M(m\times n,K)$ genau dann stetig ist, wenn alle Koeffizientenfunktionen als K-wertige Abbildungen stetig sind.

Satz 2.23. Eine Abbildung $f: X \to Y$ zwischen metrischen Räumen X und Y ist genau dann stetig, wenn für jede offene Menge $V \subset Y$ das Urbild $\stackrel{-1}{f}(V) \subset X$ von V unter f eine offene Teilmenge von X ist.

Beweis. Sei $f: X \to Y$ stetig und seien $V \subset Y$ offen, $x \in f^{-1}(V)$. Da V offen ist, gibt es ein $\epsilon > 0$ mit $B_{\epsilon}(f(x)) \subset V$. Nach dem ϵ - δ -Kriterium der Stetigkeit (Satz 2.14) gibt es zu ϵ ein $\delta > 0$ mit $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x))$. Also haben wir zu jedem Punkt $x \in f^{-1}(V)$ ein $\delta > 0$ gefunden mit $B_{\delta}(x) \subset f^{-1}(V)$. Damit ist die Offenheit von $f^{-1}(V)$ gezeigt.

Sei umgekehrt das Urbild jeder offenen Teilmenge $V \subset Y$ unter f offen in X. Für $x \in X$ und $\epsilon > 0$ ist dann die durch $U = f^{-1}(B_{\epsilon}(f(x)))$ definierte Menge U offen in X. Wegen $x \in U$ gibt es ein $\delta > 0$ mit $B_{\delta}(X) \subset U$. Dann folgt aber $f(B_{\delta}(x)) \subset f(U) \subset B_{\epsilon}(f(x))$, und die Stetigkeit von f in jedem Punkt $x \in X$ ist gezeigt.

Literatur

 $[\mathrm{EAI}]\;$ Eschmeier, J., Analysis I, Vorlesungsskript, Universität des Saarlandes, 2013.