UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Dominik Schillo

Übungen zur Vorlesung Topologie Sommersemester 2015

Blatt 12	Abgabeterm	in: Dienstag, 21.07.2015
Ein topologischer Raum X die Zusammenhangskompo	heißt $total\ unzusammenh{"angend}$, falls $\mathcal{C}(x)=\{x\}$ für alle nente von x in X	$x \in X$ gilt. Hierbei sei $\mathcal{C}(x)$
Aufgabe 46 Sei (X,t) ein topologis		$(1{+}1{+}2{=}4 { m Punkte})$
(a) Ist $t = \mathcal{P}(X)$ die d	iskrete Topologie, so ist X total unzusammenhär	ngend.
(b) Ist X total unzusa:	mmenhängend und lokal zusammenhängend, so į	gilt $t = \mathcal{P}(X)$.
(c) \mathbb{Q} versehen mit der	Relativtopologie von $\mathbb R$ ist total unzusammenhän	gend, aber nicht diskret.
Zwei Teilmengen A,B eine	s topologischen Raums heißen $getrennt$, falls $A\cap \overline{B}=\overline{A}\cap \overline{B}$	$\cap B = \emptyset ext{gilt.}$
	Raum und $A,B\subset X$ zwei nichtleere, zusammen genau dann zusammenhängend ist, wenn A,B n	
Aufgabe 48 Sei $X \neq \emptyset$ eine Menge	Untersuchen Sie, ob X mit der Topologie	(3 Punkte)
bei 21 – v eine Wenge.	$t = \{U \subset X \; ; \; U = \emptyset \text{ oder } X \setminus U \text{ endlich} \}$	
zusammenhängend ist.		
Aufgabe 49 Sei $X \neq \emptyset$ ein topologis	scher Raum. Zeigen Sie:	$(2+2=4\mathrm{Punkte})$
(a) Ist $A \subset X$, so gilt to	für jede zusammenhängende Teilmenge $Y\subset X$	
	$Y \cap A \neq \emptyset$ und $Y \cap (X \setminus A) \neq \emptyset$ \Rightarrow $Y \cap \partial A$	$\neq \emptyset$.
(b) X ist genau dann x	zusammenhängend, wenn für alle $\emptyset eq A \subsetneq X$ gilt	$: \partial A \neq \emptyset.$

(bitte wenden)

Aufgabe 50*

(2*+4*=6* Punkte)

Sei (X, t) ein lokalkompakter Hausdorffraum. Zeigen Sie:

- (a) Ist X separabel und metrisierbar, so ist X abzählbar im Unendlichen. (Hinweis: Satz von Lindelöf)
- (b) Äquivalent sind:
 - (i) t hat eine abzählbare Basis,
 - (ii) X ist separabel und metrisierbar,
 - (iii) \hat{X} ist metrisierbar,
 - (iv) X ist abzählbar im Unendlichen und metrisierbar.