UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Dominik Schillo

Übungen zur Vorlesung Topologie

Sommersemester 2015

Blatt 13 Abgabetermin: Dienstag, 28.07.2015

Aufgabe 51 (4 Punkte)

Sei X ein topologischer Raum und sei $A \subset X$. Welche der folgenden Implikationen gelten (Beweis oder Gegenbeispiel)?

- (a) A ist zusammenhängend \Leftrightarrow Int(A) ist zusammenhängend.
- (b) A ist zusammenhängend $\Leftrightarrow \overline{A}$ ist zusammenhängend.
- (c) A ist zusammenhängend $\Leftrightarrow \partial A$ ist zusammenhängend.

Aufgabe 52 (4 Punkte)

Sei G eine topologische Gruppe, das heißt eine Gruppe versehen mit einer Hausdorffschen Topologie so, dass die Abbildungen

$$G \times G \to G, \ (x,y) \mapsto xy; \quad G \to G, \ x \mapsto x^{-1}$$

stetig sind. Zeigen Sie, dass die Zusammenhangskomponente G_0 des neutralen Elements $e \in G$ ein abgeschlossener Normalteiler in G ist.

Aufgabe 53 (4 Punkte)

Sei X ein kompakter Hausdorffraum und sei $(K_n)_{n\in\mathbb{N}}$ eine Folge zusammenhängender abgeschlossener Teilmengen von X mit $K_{n+1}\subset K_n$ für alle $n\in\mathbb{N}$. Zeigen Sie, dass

$$K = \bigcap_{n \in \mathbb{N}} K_n \subset X$$

zusammenhängend ist.

(Hinweis: Sonst gäbe es disjunkte offene Mengen $U, V \subset X$ mit $K \subset U \cup V$ und $K \cap U \neq \emptyset \neq K \cap V$. Betrachten Sie $\bigcap_{n \in \mathbb{N}} (K_n \cap (U \cup V)^c)$.)

Aufgabe 54 (4 Punkte)

Seien $a, b \in \mathbb{R}$ mit a < b und sei $f : [a, b] \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie, dass genau dann $f \equiv 0$ ist, wenn

$$\int_{a}^{b} f(x)x^{k} \, \mathrm{d}x = 0$$

für alle $k \in \mathbb{N}$ gilt.

Aufgabe 55* (4* Punkte)

Sei X ein kompakter Hausdorffraum und sei $C(X) = \{f \colon X \to \mathbb{C} ; f \text{ stetig}\}$ mit der durch

$$d(f,g) = \|f - g\|_{\infty,X} \quad (f,g \in C(X))$$

definierten Metrik d versehen. Zeigen Sie:

X ist metrisierbar \Leftrightarrow C(X) ist separabel.

(Hinweis: Für $,\Rightarrow$ " wählen Sie eine dichte Teilmenge $\{x_n ; n \in \mathbb{N}\}$ von X und betrachten die von den Funktionen $d(\cdot,x_n)$ und den konstanten Funktionen erzeugte Teilalgebra von C(X).

Für " \Leftarrow " definieren Sie eine abzählbare Basis der Topologie von X mit Hilfe von Funktionen f_n aus einer dichten Teilmenge $\{f_n \; ; \; n \in \mathbb{N}\} \subset C(X)$.)