UNIVERSITÄT DES SAARLANDES ${\bf FACHRICHTUNG~6.1-MATHEMATIK}$

Prof. Dr. Jörg Eschmeier M.Sc. Daniel Kraemer

Übungen zur Vorlesung Komplexe Analysis

Sommersemester 2016	
Blatt 1	Abgabetermin: Mittwoch, 04.05.2016
Aufgabe 1	(4 Punkte)
Sei $K \subset \mathbb{C}^n$ eine kompakte, konvexe Menge Beweis von Korollar 5.7.)	e. Zeigen Sie, dass K polynom-konvex ist. (Hinweis.
Für ein Kompaktum $K \subset \mathbb{C}^n$ bezeichne $P(K)$ die Z Folge $(p_k)_{k \in \mathbb{N}}$ von Polynomen $p_k \in \mathbb{C}[z_1, \ldots, z_n]$ gib	Algebra aller stetigen Funktionen $f: K \to \mathbb{C}$, für die es eine $t \ mit \ f - p_k _{\infty,K} \xrightarrow{k \to \infty} 0.$
Aufgabe 2	(4 Punkte)
	als Teilmenge von \mathbb{C}^n polynom-konvex ist. (Hinweise de dann, dass $\tilde{K}=K$ ist. Sie dürfen benutzen, dass $P(L)=$ one-Weierstra β).)
Eine offene Menge $\Omega \subset \mathbb{C}^n$ heißt polynomieller Poleinem endlichen Tupel $p = (p_1, \dots, p_m) \in \mathbb{C}[z_1, \dots, z_m]$	lyeder, falls Ω die Gestalt $\Omega = \{z \in \mathbb{C}^n \mid p(z) _{\infty} < 1\}$ mi $[z_n]^m$ hat.
Aufgabe 3	(4 Punkte)
Sei $\Omega \subset \mathbb{C}^n$ offen. Zeigen Sie, dass Ω Runges Polyeder $(\Omega_k)_{k \in \mathbb{N}}$ mit $\Omega_k \subset \Omega_{k+1}$ $(k \in \mathbb{N})$ gi	ch ist genau dann, wenn es eine Folge polynomieller bt so, dass
Ω	$=igcup_{k\in\mathbb{N}}\Omega_k.$
(Hinweis: Benutzen Sie eine kompakte Ausschöpfung	g und Lemma 7.3.)
Aufgabe 4	(4 Punkte)
Sei $K \subset \mathbb{C}^n$ kompakt. Zeigen Sie:	
K polynom-konvex $=$	$\Rightarrow \mathbb{C}^n \setminus K$ zusammenhängend.
Gilt auch die umgekehrte Inklusion? Beweis	oder Gegenbeispiel!

Die Übungsblätter finden Sie auch auf unserer Homepage: