UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Daniel Kraemer

Übungen zur Vorlesung Komplexe Analysis

Sommersemester 2016

Blatt 11 Abgabetermin: Mittwoch, 13.07.2016

Aufgabe 33 (4 Punkte)

Seien $a \in \mathbb{C}^n$, R > 0 und $r = (r_1, \dots, r_n) \in (0, \infty)^n$. Zeigen Sie, dass die Kugel $B_R(a) \subset \mathbb{C}^n$ streng pseudokonvex ist, aber für n > 1 der Polyzylinder $P_r(a) \subset \mathbb{C}^n$ nicht. (*Hinweis: Aufgabe 32.*)

Für $n \in \mathbb{N}^*$ und r > 0 schreiben wir im Folgenden P_r^n bzw. \overline{P}_r^n für den offenen bzw. abgeschlossenen Polyzylinder um 0 mit Radius r.

Aufgabe 34

(1+2+2+1 = 6 Punkte)

Es seien $n \geq 2$, $U \subset \mathbb{C}^n$ offen, $A \subset U$ analytisch mit $0 \in A$ und $f \in \mathcal{O}(U \setminus A)$. Weiter gebe es r > 0 so, dass $\overline{P}_r^n \subset U$ und $A \cap (\{0\} \times \overline{P}_r^2) = \{0\}$. Zeigen Sie:

(a) Es gibt $\varepsilon > 0$ so, dass

$$K = \overline{P}_{\varepsilon}^{n-2} \times (\overline{P}_{r}^{2} \setminus P_{r/2}^{2}) \subset \overline{P}_{r}^{n} \setminus A.$$

(Hinweis: $\{0\} \times (\overline{P}_r^2 \setminus P_{r/2}^2) \subset \overline{P}_r^n \setminus A.$)

(b) Für jedes $w \in P_{\varepsilon}^{n-2}$ ist die Menge

$$G_w = P_r^2 \setminus \{z \in P_r^2 \mid (w, z) \in A\} \subset \mathbb{C}^2$$

ein Gebiet. (Hinweis: Die Menge $\{z \in P_r^2 \mid (w, z) \in A\}$ ist analytisch in P_r^2 .)

- (c) Zu jedem $w \in P_{\varepsilon}^{n-2}$ gibt es $g_w \in A(P_r^2)$ mit $g_w(z) = f(w,z)$ für alle $z \in G_w$. (Hinweis: Betrachten Sie die Funktion $f_w = f(w,\cdot)|_{\overline{P}_r^2 \setminus P_{r/2}^2}$ und verwenden Sie Teil (b).)
- (d) Es gilt $|f(z)| \leq ||f||_K$ für alle $z \in (P_{\varepsilon}^{n-2} \times P_r^2) \setminus A$. (Hinweis: Verwenden Sie Teil (c) und das Maximumprinzip.)

(bitte wenden)

Sei $U \subset \mathbb{C}^n$ offen und $\emptyset \neq A \subset U$ analytisch sowie $s \in \mathbb{N}$. Man sagt, A habe Kodimension s im Punkt $a \in A$ (in Zeichen: $\operatorname{codim}_a A = s$), falls es einen s-dimensionalen Untervektorraum $V_a \subset \mathbb{C}^n$, aber keinen Untervektorraum größerer Dimension, gibt so, dass a isolierter Punkt von $A \cap (a + V_a) \subset \mathbb{C}^n$ ist. Wir setzen

$$\operatorname{codim} A = \min_{a \in A} \operatorname{codim}_a A.$$

Aufgabe 35 (3 Punkte)

Es sei $U \subset \mathbb{C}^n$ offen und $A \subset U$ analytisch mit codim $A \geq 2$. Zeigen Sie mit Hilfe von Aufgabe 34, dass

$$\mathcal{O}(U \setminus A) = \mathcal{O}(U)|_{U \setminus A}.$$

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre/ss16/ft3