UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M.Sc. Daniel Kraemer

Übungen zur Vorlesung Komplexe Analysis

Sommersemester 2016

Blatt 4	Abgabetermin: Mittwoch, 25.05.2016

Aufgabe 12 (3+1=4 Punkte)

Sei $u: G \to [-\infty, \infty)$ subharmonisch auf einem Gebiet $G \subset \mathbb{C}$ und sei $a \in G$ mit $u(z) \leq u(a)$ für alle $z \in G$.

- (a) Zeigen Sie mit Hilfe von Aufgabe 10, dass die Menge $\{z \in G \mid u(z) = u(a)\}$ offen ist.
- (b) Folgern Sie, dass u konstant ist.

Aufgabe 13 (2+2+1=5 Punkte)

Sei $u: G \to [-\infty, \infty)$ subharmonisch auf einem Gebiet $G \subset \mathbb{C}$ mit $u \not\equiv -\infty$.

(a) Seien $a \in G$ mit $u(a) > -\infty$ und R > 0 mit $\overline{D}_R(a) \subset G$. Zeigen Sie, dass $u|_{\overline{D}_R(a)}$ integrabel ist. Wählen sie dazu stetige Funktionen $h_k \colon \overline{D}_R(a) \to \mathbb{R}$ mit $h_k \downarrow u|_{\overline{D}_R(a)}$ und berechnen Sie

$$\int_{\overline{D}_{R}(a)} h_{k} dz$$

mit Hilfe von Polarkoordinaten.

(b) Zeigen Sie, dass die Menge

$$M = \{z \in G \mid \text{es existiert eine Umgebung } U \text{ von } z \text{ mit } u|_U \in \mathcal{L}^1(U)\}$$

abgeschlossen ist. (Hinweis: Sonst gäbe es eine Folge $(a_k)_{k\in\mathbb{N}}$ in M so, dass $u(a_k) > -\infty$ für alle $k \in \mathbb{N}$ und $\lim_{k\to\infty} a_k \in G \setminus M$ gilt.)

(c) Schließen Sie, dass u lokal integrabel ist, das heißt, dass $u|_K \in \mathcal{L}^1(K)$ ist für jede kompakte Menge $K \subset G$.

Aufgabe 14 (4 Punkte)

Sei $U \subset \mathbb{C}^n$ offen so, dass jedes Cousin-I-Datum über U eine Lösung hat. Zeigen Sie, dass $H^1(C^{\infty}(U), \overline{\partial}) = 0$ ist. (Hinweis: Offene Kugeln $B \subset \mathbb{C}^n$ sind Rungesch.)

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre/ss16/ft3