UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M.Sc. Daniel Kraemer

Übungen zur Vorlesung Komplexe Analysis

Sommersemester 2016

Blatt 6	Abgabetermin: Mittwoch, 08.06.2016
Aufgabe 18	(4 Punkte)
Beweisen Sie Lemma 9.5 der Vorlesung.	
Aufgabe 19	(4 Punkte)
Seien $\Omega \subset \mathbb{C}^n$ offen, $(\Omega_j)_{j \in \mathbb{N}}$ und $(K_j)_{j \in \mathbb{N}}$ auf kompakter Mengen $K_j \subset \mathbb{C}^n$ mit $\Omega = \bigcup_{j \in \mathbb{N}}$ Int	steigende Folgen offener Mengen $\Omega_j \subset \mathbb{C}^n$ bzw. $s(K_j)$ so, dass für alle $j \in \mathbb{N}$ gilt:
(i) $K_j \subset \Omega_j \subset \Omega$,	
(ii) K_j hat die Cousin-Eigenschaft,	
(iii) jedes $g \in \mathcal{O}(K_j)$ ist auf K_j gleichmäßiger	Limes einer Folge in $\mathcal{O}(\Omega_{j+1})$.
	s. (Hinweis: Gehen Sie wie im Beweis der Exaktheit der e brauchen nur die Beweisteile auszuführen, die sich vom
Aufgabe 20	(3 Punkte)
Sei $U\subset\mathbb{C}^2$ eine offene Menge so, dass jedes Codass U ein Holomorphiebereich ist. Benutzen S	usin-I-Datum auf U eine Lösung hat. Zeigen Sie, Sie dabei Aufgabe 14.
Die Übungsblätter finden Sie auch auf unserer	Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre/ss16/ft3