## UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Daniel Kraemer



## Übungen zur Vorlesung Komplexe Analysis

Sommersemester 2016

## Aufgabe 27

(2 + 2 + 2 = 6 Punkte)

Sei  $U \subset \mathbb{C}$  offen und  $u \in C^2(U, \mathbb{R})$ . Zeigen Sie:

- (a) Hat u in einem Punkt  $a \in U$  ein lokales Maximum, so ist  $\Delta u(a) \leq 0$ .
- (b) Ist  $\Delta u \geq 0$  auf U, so ist u subharmonisch. (Hinweis: Mit Teil (a) folgt zunächst, dass für alle  $\varepsilon, \delta > 0$  die Funktion  $u(z) \varepsilon + \delta |z|^2$  subharmonisch ist auf U.)
- (c) Ist u subharmonisch, so ist  $\Delta u \geq 0$ .

Für eine Funktion  $u \in C^2(U,\mathbb{R})$  auf einer offenen Menge  $U \subset \mathbb{C}^n$  und  $p \in U$  sei  $L_p(u) = (\overline{\partial}_j \partial_k u(p))_{1 \leq j,k \leq n} \in M(n,\mathbb{C})$ . Man nennt  $u \in C^2(U,\mathbb{R})$  plurisubharmonisch, falls die Matrix  $L_p(u)$  positiv semidefinit ist für alle  $p \in U$ , d.h. wenn  $\langle L_p(u)t, t \rangle \geq 0$  ist für alle  $p \in U$  und  $t \in \mathbb{C}^n$ .

Aufgabe 28 (1 + 4 = 5 Punkte)

Zeigen Sie:

- (a) Für  $U \subset \mathbb{C}$  offen und  $u \in C^2(U, \mathbb{R})$  ist  $\Delta u = 4\overline{\partial}\partial u$ .
- (b) Für  $U \subset \mathbb{C}^n$  offen ist eine Funktion  $u \in C^2(U, \mathbb{R})$  plurisubharmonisch genau dann, wenn für jedes  $a \in U$  und jedes  $t \in \mathbb{C}^n$  die Funktion

$$\{z \in \mathbb{C} \mid a + zt \in U\} \longrightarrow \mathbb{R}, \quad z \longmapsto u(a + zt)$$

subharmonisch ist. (Hinweis: Benutzen Sie Aufgabe 27 und berechnen Sie  $\overline{\partial}_z\partial_z(u(a+zt))$ .)

(bitte wenden)

Eine Funktion  $u \in C^2(U, \mathbb{R})$  auf einer offenen Menge  $U \subset \mathbb{C}^n$  heißt streng plurisubharmonisch, falls die Matrix  $L_p(u)$  positiv definit ist für alle  $p \in U$ , d.h. wenn  $\langle L_p(u)t, t \rangle > 0$  ist für alle  $p \in U$  und  $t \in \mathbb{C}^n \setminus \{0\}$ .

Aufgabe 29 (3 Punkte)

Zeigen Sie, dass die Funktionen  $u_1, u_2 \colon \mathbb{C}^n \to \mathbb{R}$ ,

$$u_1(z) = ||z||^2, \quad u_2(z) = \log(1 + ||z||^2)$$

streng plurisubharmonisch sind.

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre/ss16/ft3