UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier

Dipl.-Math. Christoph Barbian, Dominik Faas

Übungen zur Vorlesung Funktionentheorie II

Wintersemester 2004/05

Blatt 5

Abgabetermin: Montag, 29.11.2004

Eine komplexe Mannigfaltigkeit der Dimension p ist ein topologischer Hausdorffraum M zusammen mit einem System von Homöomorphismen (auch Karten genannt)

$$\varphi_i: U_i \to V_i \quad (i \in I),$$

zwischen offenen Mengen $U_i \subset M$ und $V_i \subset \mathbb{C}^p$, so daß

- $M = \bigcup_{i \in I} U_i$ gilt.
- Wann immer $U_i \cap U_j \neq \emptyset$ ist, ist

$$\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

eine biholomorphe Abbildung zwischen offenen Mengen in \mathbb{C}^p .

Aufgabe 20 (4 Punkte)

Sei $M \subset \mathbb{C}^n$ eine Untermannigfaltigkeit im Sinne der Vorlesung. Man zeige, daß M versehen mit der Relativtopologie des \mathbb{C}^n zusammen mit einem geeigneten System von Karten eine komplexe Mannigfaltigkeit ist.

Für eine offene Menge $D \subset \mathbb{C}^n$ nennt man $A \subset D$ analytisch in D, falls A abgeschlossen in D ist und zu jedem $a \in A$ eine offene Umgebung U von a und eine holomorphe Abbildung $h \in \mathcal{O}(U, \mathbb{C}^m)$ existieren, so dass $A \cap U = Z(h)$.

Aufgabe 21 (2+1+1=4 Punkte)

Sei $D \subset \mathbb{C}^n, D_1 \subset \mathbb{C}^{n_1}, D_2 \subset \mathbb{C}^{n_2}$ offen Mengen. Zeigen Sie:

- (a) Endliche Vereiningungen und endliche Durchschnitte analytischer Mengen in D sind wieder analytisch in D.
- (b) Sind $A_1 \subset D_1$, $A_2 \subset D_2$ analytisch, so ist $A_1 \times A_2 \subset D_1 \times D_2$ analytisch.
- (c) Ist $f: D_1 \to D_2$ holomorph und $A \subset D_2$ analytisch, so ist $f^{-1}(A) \subset D_1$ analytisch.

Aufgabe 22 (2+2=4 Punkte)

Sei $M \subset \mathbb{C}^n$ eine komplexe Untermannigfaltigkeit. Zeigen Sie:

- (a) Es gibt eine offene Menge $D \subset \mathbb{C}^n$, so dass $M \subset D$ abgeschlossen in D ist.
- (b) Ist $D \subset \mathbb{C}^n$ offen, so dass $M \subset D$ abgeschlossen in D ist, so ist M analytisch in D.

Sei $\varepsilon > 0$ und $0 \neq f \in \mathcal{O}(B_{\varepsilon}(0))$.

(a) Zeigen Sie, dass f eine eindeutige punktweise konvergente Reihenentwicklung der Form

$$f(z) = \sum_{k=0}^{\infty} p_k(z) \quad (z \in B_{\varepsilon}(0))$$

mit homogenen Polynomen $p_k \in \mathbb{C}[z_1, \ldots, z_n]$ vom Grad k besitzt. Diese darstellende Reihe konvergiert automatisch kompakt gleichmäßig auf $B_{\varepsilon}(0)$.

(b) Seien p_k $(k \in \mathbb{N})$ wie im Teil (a). Sei m die kleinste natürliche Zahl mit $p_m \neq 0$. Zeigen Sie, dass eine unitäre Matrix $A \in M_n(\mathbb{C})$ existiert, so dass die Funktion

$$B_{\varepsilon}(0) \to \mathbb{C} \; ; \; z \mapsto f(Az)$$

 z_n -regulär in 0 von der Ordnung m ist.

Aufgabe 24^* ($2^*+2^*=4^*$ Punkte)

Ist Ω ein Reinhardtbereich, $f \in \mathcal{O}(\Omega)$ und $r \in \tau(\Omega \cap (\mathbb{C}^*)^n)$, so sei

$$f_r(z) = \int_{\partial_0 P_r(0)} \frac{f(\xi)}{(\xi_1 - z_1) \cdot \dots \cdot (\xi_n - z_n)} d\xi_1 \dots d\xi_n \quad (z \in P_r(0)).$$

(a) Seien $s=(s_1,\ldots,s_n), t=(t_1,\ldots,t_n)\in(0,\infty)^n$ mit $s_j< t_j$ für $j=1,\ldots,n$. Wir betrachten den Reinhardtbereich

$$\Omega := \{ z \in \mathbb{C}^n; \ s_i < |z_i| < t_i \text{ für } j = 1, \dots, n \} \ .$$

Zeigen Sie, dass die Funktion $f_r|_{P_s(0)}: P_s(0) \to \mathbb{C}$ unabhängig von $r \in \tau(\Omega)$ ist. (Hinweis: Man kann die Cauchy-Integralformel im eindimensionalen Fall benutzen.)

(b) Sei Ω ein einfacher Reinhardtbereich und $f \in \mathcal{O}(\Omega)$. Zeigen Sie, dass die Funktionen f_r für alle $r \in \tau(\Omega \cap (\mathbb{C}^*)^n)$ auf einer geeigneten Nullumgebung mit f übereinstimmen. (Hinweis: Betrachen Sie die Menge

 $\{r \in \tau(\Omega \cap (\mathbb{C}^*)^n); f_r \text{ stimmt mit } f \text{ auf einer Nullumgebung überein } \}$.)