UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier

Dipl.-Math. Christoph Barbian, Dominik Faas

Übungen zur Vorlesung Funktionentheorie II

Wintersemester 2004/05

Blatt 9	Abgabetermin: Montag, 10.01.2005

Aufgabe 40 (4 Punkte)

Zeigen Sie, dass eine offene Menge $\Omega \subset \mathbb{C}^N$ genau dann ein Holomorphiebereich ist, wenn alle Zusammenhangskomponenten von Ω Holomorphiebereiche sind.

Aufgabe 41 (4 Punkte)

Sei $K\subset\mathbb{C}$ kompakt. Zeigen Sie, dass für die polynom-konvexe Hülle von K

$$\tilde{K} \ := \ \left\{z \in \mathbb{C}; \ |p(z)| \leq \|p\|_{\infty,K} \text{ für alle } p \in \mathbb{C}[z] \ \right\}$$

gilt, dass $\mathbb{C}\setminus \tilde{K}$ genau die unbeschränkte Zusammenhangskomponente von $\mathbb{C}\setminus K$ ist.

Aufgabe 42 (4 Punkte)

Sei $D=\{z\in\mathbb{C}^n;\ 1<\|z\|<3\}\subset\mathbb{C}^n\ \text{und}\ K=\{z\in D;\ \|z\|=2\}\subset D.$ Was ist die holomorph-konvexe Hülle \hat{K}_D von K in D?

Aufgabe 43* (10* Punkte)

Zeigen Sie die Punkte (1) bis (9) über Differentialformen aus der Vorlesung (§6).

Frohe Weihnachten und ein gutes neues Jahr!