UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1 - Mathematik

Professor Dr. Jörg Eschmeier

Übungen zur Vorlesung Maß- und Integrationstheorie

Wintersemester 2007/2008

Blatt 5

Abgabetermin: Mittwoch, 23.1.2008, vor der Vorlesung

Sei (X, \mathfrak{M}, μ) ein Maßraum und $\mathcal{L}^p(\mu) = \mathcal{L}^p(\mu, \mathbb{C})$ für $1 \leq p \leq \infty$.

Aufgabe 17 (2x2=4 Punkte)

Seien $1 \leq p, p' \leq \infty$ und $f_n \in \mathcal{L}^p(\mu) \cap \mathcal{L}^{p'}(\mu)$ $(n \in \mathbb{N})$. Man zeige:

- (a) Ist $f \in \mathcal{L}^p(\mu)$ mit $||f_n f||_p \xrightarrow{n} 0$, so gibt es eine Teilfolge $(f_{n_k})_{k \in \mathbb{N}}$ von $(f_n)_{n \in \mathbb{N}}$ so, dass $(f_{n_k}(x)) \xrightarrow{k} f(x)$ μ -fast überall.
- (b) Konvergiert (f_n) in $\mathcal{L}^p(\mu)$ gegen $f \in \mathcal{L}^p(\mu)$ und in $\mathcal{L}^{p'}(\mu)$ gegen $g \in \mathcal{L}^{p'}(\mu)$, so ist f = g μ -fast überall.

Aufgabe 18 (3 Punkte)

Gibt es $1 \le p < p' < \infty$ und eine Konstante C > 0 mit $\mathcal{L}^{p'}(\mu) \subset \mathcal{L}^p(\mu)$ und $||f||_p \le C||f||_{p'}$ für alle $f \in \mathcal{L}^{p'}(\mu)$, so ist

 $\sup\{\mu(A): A \in \mathfrak{M} \text{ mit } \mu(A) < \infty\} < \infty.$

Aufgabe 19 (4 Punkte)

Seien $1 \leq p < p' < \infty$ und sei $f \in \mathcal{L}^p(\mu) \cap \mathcal{L}^{p'}(\mu)$. Man zeige, dass $f \in \mathcal{L}^r(\mu)$ ist für alle p < r < p' und dass die Funktion $\varphi : [p, p'] \to \mathbb{R}$, $\varphi(r) = \log \|f\|_r^r$ konvex ist. Hinweis: Schätzen Sie für r = tp + (1-t)p' das Integral $\|f\|_r^r$ mit Hilfe der Hölderschen Ungleichung nach oben ab.

Aufgabe 20 (2x2=4 Punkte)

Seien $1 < p,q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Man zeige:

- (a) Für $a, b \in [0, \infty)$ gilt: $a^{\frac{1}{p}} b^{\frac{1}{q}} = \frac{a}{p} + \frac{b}{q} \Leftrightarrow a = b$.
- (b) Für $f \in \mathcal{L}^p(\mu)$ und $g \in \mathcal{L}^q(\mu)$ gilt:

 $||fg||_1 = ||f||_p ||g||_q \Leftrightarrow \exists A, B \geq 0$ mit $(A, B) \neq (0, 0)$ und $A|f|^p = B|g|^q$ μ -fast überall.

Hinweis: Beweis der Hölderschen Ungleichung.