UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 - MATHEMATIK

Prof. Dr. Jörg Eschmeier Dr. Christoph Barbian

Übungen zur Vorlesung Einführung in die Operatorentheorie und Operatoralgebren

Wintersemester 2007/2008

g Im Folgenden seien H, K komplexe Hilberträume. Wir nennen eine Teilalgebra $\{0\} \neq \mathcal{A} \subset L(H)$ irreduzibel, falls $Lat(\mathcal{A}) = \{\{0\}, H\}$ gilt. Aufgabe 34 (2+2=4 Punkte)Sei $\mathcal{A} \subset L(H)$ eine irreduzible, abgeschlossene Teilalgebra. Zeigen Sie: (a) $\mathcal{A}^* \subset L(H)$ is eine irreduzible Teilalgebra. (b) Gibt es Vektoren $x_0, y_0 \in H \setminus \{0\}$ mit $x_0 \otimes y_0 \in \mathcal{A}$, so ist $\mathcal{K}(H) \subset \mathcal{A}$. Hinweis: Beweis von Satz 6.5. (2+1+1+2=6 Punkte)Aufgabe 35 Sei dim(H) < ∞ und $\mathcal{A} \subset L(H)$ eine irreduzible Teilalgebra. Zeigen Sie: (a) Jeder Operator $T \in \mathcal{A}' \setminus \{0\}$ ist invertierbar. Schließen Sie, dass $\mathcal{A}' = \mathbb{C} \cdot 1_H$ gilt. (b) Ist $\dim(H) > 1$, so gibt es einen nicht invertierbaren Operator $T_0 \in \mathcal{A} \setminus \{0\}$. (c) Für T_0 wie in (b) ist $(T_0\mathcal{A})_{|\operatorname{Im} T_0} \subset L(\operatorname{Im} T_0)$ eine irreduzible Teilalgebra. (d) Es gilt $\mathcal{A} = L(H)$. Hinweis: Induktion nach $\dim(H)$ und Teil (b). Aufgabe 36 (3+1=4 Punkte)(a) Seien $A, B \in L(H)$ mit Im $A \subset \operatorname{Im} B$. Zeigen Sie, dass ein Operator $C \in L(H)$ existiert mit A = BC.

(b) Sei $\{0\} \neq J \subset L(H)$ ein abgeschlossenes Ideal. Zeigen Sie, dass $\mathcal{K}(H) \subset J$ gilt.

(bitte wenden)

Aufgabe 37 (4x1=4 Punkte)

Sei $\mathcal{A} \subset L(H)$ eine C^* -Teilalgebra mit $\mathcal{K}(H) \subset \mathcal{A}$ und sei $\pi : \mathcal{A} \to L(K)$ eine Darstellung. Zeigen Sie:

- (a) Es ist $K_1 := \overline{LH}\left(\bigcup_{T \in \mathcal{K}(H)} \pi(T)K\right) \in \operatorname{Lat}(\pi)$.
- (b) Für $K_0 := K_1^{\perp} \in \text{Lat}(\pi)$ gilt $(\pi_{|K_0})(\mathcal{K}(H)) = \{0\}.$
- (c) Es gibt eine Indexmenge I so, dass $\pi_{|K_1}:\mathcal{K}(H)\to L(K_1)$ äquivalent zu der Darstellung

$$\bigoplus_{i\in I} \mathrm{id}: \mathcal{K}(H) \to L(\mathop{\bigoplus}_{i\in I} H)$$

ist.

(d) Teil (c) bleibt richtig, wenn man $\mathcal{K}(H)$ durch \mathcal{A} ersetzt.

http://www.math.uni-sb.de/ag/eschmeier/lehre