UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier Dr. Christoph Barbian

Übungen zur Vorlesung Einführung in die Operatorentheorie und Operatoralgebren

0	Wintersemester 2007/2008
Blatt 10	Abgabetermin: Montag, 21.01.2008, vor der Vorlesung
	Sei $\mathcal A$ eine unitale C^* -Algebra.
Aufgabe 38	(2+1+2=5 Punkte)
Sei f ein Zustand von	${\mathcal A}$ und $\pi_f:{\mathcal A}\to L(H_f)$ die GNS-Darstellung von $f.$ Man zeige:
(a) Für ein abgeschlos	ssenes Ideal $I \subset \mathcal{A}$ gilt: $I \subset \ker \pi_f \Leftrightarrow I \subset \ker f$.
(b) Ist f treu (das he	ißt, $\ker f \cap \mathcal{A}_+ = \{0\}$), so ist $\ker \pi_f = \{0\}$.
Darstellungen π_f	ein *-Isomorphismus mit $f(\varrho(x)) = f(x)$ für $x \in \mathcal{A}$, so sind die ϱ und π_f äquivalent. ert einen unitären Operator auf H_f .
Aufgabe 39	(4 Punkte)
	$(i=1,2)$ Darstellungen von \mathcal{A} mit zyklischen Vektoren $\xi_i \in H_i$ so, $\pi_2(x)\xi_2, \xi_2\rangle$ für alle $x \in \mathcal{A}$ gilt. Zeigen Sie, dass π_1 und π_2 äquivalent
Aufgabe 40	(2+2=4 Punkte)
	bra aller Polynome in einer reellen Variablen mit komplexen Koefnit der Norm $\ p\ =\sup_{0\leq t\leq 1} p(t) $ und der Involution $p^*(t)=\overline{p(t)}$.
(a) A erfüllt alle Eige	nschaften einer C^* -Algebra bis auf Vollständigkeit.
(b) $f: A \to \mathbb{C}$, $p \vdash p \in A$.	$\rightarrow p(2)$ ist eine unstetige Linearform auf A mit $f(p^*p) \geq 0$ für alle

(bitte wenden)

Aufgabe 41

(5x2(*)=10(*) Punkte)

Sei $E = \mathcal{A}_{sa}$ aufgefasst als reeller Banachraum (bezüglich der von \mathcal{A} induzierten Norm). Sei $S(\mathcal{A})$ der Zustandsraum von \mathcal{A} und $S = S(\mathcal{A})_{|E}$. Man zeige:

- (a) $S \subset E'$ besteht genau aus den reellen Linearformen $f: E \to \mathbb{R}$ mit f(e) = 1 und $f(x) \geq 0$ für alle $x \in \mathcal{A}_+$.
- (b) $S \subset (E', \tau_{w^*})$ ist konvex und kompakt.
- (c) $\text{ball}(E') = \overline{C(S \cup (-S))}^{\tau_{w^*}} = \{tf (1-t)g \; ; \; t \in [0,1] \text{ und } f, g \in S\}.$
- (d) Für jede gegebene stetige Linearform $f: \mathcal{A} \to \mathbb{C}$ gibt es positive Linearformen $f_1, \ldots, f_4: \mathcal{A} \to \mathbb{C}$ mit $f = f_1 f_2 + i(f_3 f_4)$.
- (e) Zu jeder stetigen Linearform $f: \mathcal{A} \to \mathbb{C}$ existieren eine Darstellung $\pi: \mathcal{A} \to L(H)$ und Vektoren $\xi, \eta \in H$ mit $f(x) = \langle \pi(x)\xi, \eta \rangle$ für alle $x \in \mathcal{A}$.

http://www.math.uni-sb.de/ag/eschmeier/lehre