UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier Dr. Christoph Barbian

Übungen zur Vorlesung Einführung in die Operatorentheorie und Operatoralgebren

Wintersemester 2007/2008

Blatt 11

Abgabetermin: Montag, 28.01.2008, vor der Vorlesung

Aufgabe 42 (4 Punkte)

Sei \mathcal{A} eine C^* -Algebra, und sei $x \in \mathcal{A}$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (i) $x \ge 0$
- (ii) $\pi(x) \geq 0$ für jede Darstellung $\pi: \mathcal{A} \to L(H)$
- (iii) $f(x) \geq 0$ für jede positive Linearform $f: \mathcal{A} \to \mathbb{C}$.

Aufgabe 43 (4 Punkte)

Sei $f: \mathcal{A} \to \mathbb{C}$ eine positive Linearform auf einer C^* -Algebra \mathcal{A} , und sei $(a_{ij})_{i,j=1}^n$ eine Matrix in $M(n,\mathcal{A})_+$. Zeigen Sie, dass $(f(a_{ij}))_{i,j=1}^n \in M(n,\mathbb{C})_+$ gilt. Hinweis: GNS-Darstellung.

Aufgabe 44 (4 Punkte)

Sei $h \in \mathcal{A}_+$ ein positives Element in einer C^* -Algebra \mathcal{A} , und seien Funktionen f_n definiert durch

$$f_n: [0, \infty) \to \mathbb{R} \ , \ f_n(t) = \frac{t}{\frac{1}{n} + t} \quad (n \ge 1).$$

Man zeige, dass

$$J = \{x \in \mathcal{A} ; \lim_{n \to \infty} f_n(h)x = x\} \subset \mathcal{A}$$

ein abgeschlossenes Rechtsideal mit $h \in J$ ist.

Aufgabe 45 (3x2=6 Punkte)

Sei \mathcal{A} eine C^* -Algebra. Zeigen Sie:

- (a) Für Elemente $a, h \in \mathcal{A}$ mit $0 \le a \le h$ gilt $a \in \overline{h\mathcal{A}} \cap \overline{\mathcal{A}h}$. Hinweis: Aufgabe 28(c).
- (b) Ist \mathcal{A} separabel, so existiert ein $h \in \mathcal{A}_+$ mit $\mathcal{A} = \overline{h}\overline{\mathcal{A}} \cap \overline{\mathcal{A}h}$. Hinweis: Definieren Sie $h = \sum_{n=1}^{\infty} \frac{h_n}{n^2}$ mit geeigneten h_n .
- (c) Ist \mathcal{A} separabel, so gibt es eine abzählbare approximative Eins $(e_n)_{n\geq 1}$ für \mathcal{A} mit $e_ne_m=e_me_n$ für alle $n,m\geq 1$.

 Hinweis: Benutzen Sie Aufgabe 44.
