# UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier Dipl.-Math. Michael Wernet



# Übungen zur Vorlesung Mathematik für Informatiker I

Wintersemester 2011/2012

## Blatt zur Vorbereitung auf die Klausur

Abgabetermin: /

## Aufgabe 1

Zeigen Sie mit vollständiger Induktion, dass für alle  $n \geq 2$  gilt

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}.$$

## Aufgabe 2

Sei p eine Primzahl und seien  $a, b \in \mathbb{N}$ . Zeigen Sie:

$$(a+b)^p \equiv a^p + b^p \mod p.$$

#### Aufgabe 3

Seien  $a_0, b_0 \in [0, \infty)$  und

$$a_{n+1} = \sqrt{a_n b_n}, \ b_{n+1} = \frac{1}{2}(a_n + b_n).$$

Zeigen sie, dass die Folgen  $(a_n)_{n\geq 0}$ ,  $(b_n)_{n\geq 0}$  konvergieren und dass  $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$  ist.

(Hinweis: Aufgabe 24.)

## Aufgabe 4

Bestimmen Sie die Menge aller  $x \in \mathbb{R}$ , in denen die folgenden Reihen konvergieren

$$(a) \quad \sum_{n=1}^{\infty} \frac{x^n}{x^{2n} + 1},$$

(b) 
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n (x+2)^n$$
.

#### Aufgabe 5

- (a) Sei  $f:[0,1]\to\mathbb{R}$  beschränkt. Zeigen Sie, dass die Funktion  $g:[0,1]\to\mathbb{R},\ g(x)=xf(x)$  stetig in 0 ist und dass die Funktion  $h:[0,1]\to\mathbb{R},\ h(x)=x^2f(x)$  differenzierbar in 0 ist.
- (b) Zeigen Sie, dass  $|x| \leq |\tan(x)|$  für alle  $x \in ]-\frac{\pi}{2},\frac{\pi}{2}[$  gilt.

(bitte wenden)

## Aufgabe 6

Sei  $f: \mathbb{R} \to \mathbb{R}$  unendlich oft differenzierbar mit f(-x) = -f(x) für alle  $x \in \mathbb{R}$ . Zeigen Sie, dass  $f^{(n)}(0) = 0$  für alle geraden natürlichen Zahlen n.

# Aufgabe 7

Berechnen Sie die folgenden Grenzwerte:

(a) 
$$\lim_{x\downarrow 0} \frac{\ln(x)}{\cot(x)}$$
,

(b) 
$$\lim_{x \to 0} \left( \frac{\sin(x)}{x} \right)^{\frac{1}{1 - \cos(x)}},$$

(c) 
$$\lim_{x \uparrow \frac{\pi}{2}} \frac{\tan(3x)}{\tan(x)}.$$

## Aufgabe 8

(a) Bestimmen Sie das Monotonieverhalten und alle lokalen Extrema der Funktion

$$f:(-\infty,0)\to\mathbb{R},\ f(x)=rac{\ln(-x)}{x}.$$

(b) Seien  $f,g:[a,b]\to\mathbb{R}$  differenzierbar mit f(a)=f(b)=0. Zeigen Sie, dass ein  $t\in ]a,b[$  existiert mit f'(t)=g'(t)f(t).

(Hinweis: Betrachte  $F(x) = f(x)e^{-g(x)}$ .)

#### Aufgabe 9

Berechnen Sie folgende Integrale

$$(a) \quad \int_0^1 x^2 e^{-x} dx,$$

(b) 
$$\int_{1}^{e} \cos\left(\frac{\pi}{2}\ln(x)\right) dx,$$

(c) 
$$\int_0^1 \frac{2x-3}{2x+1} dx.$$

#### Hinweise:

Als einziges Hilfsmittel ist bei den Klausuren ein handbeschriebenes DIN A4-Blatt, Vorderund Rückseite, erlaubt. Darüber hinausgehende Hilfsmittel, insbesondere Vorlesungsmitschriften, Bücher oder Taschenrechner, sind nicht erlaubt.