UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Dipl.-Math. Kevin Everard

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14

Blatt 5

Abgabetermin: bis Freitag, den 22.11.2013, 12 Uhr

Aufgabe 1

(2+4=6 Punkte)

(a) Prüfen Sie, ob die Matrizen

$$\begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}$$

invertierbar sind, und berechnen Sie gegebenenfalls die inverse Matrix.

(b) Prüfen Sie, ob die Matrix

$$A = \begin{pmatrix} -5 & 3 & 0 \\ 1 & 0 & -6 \\ -3 & 2 & 0 \end{pmatrix}$$

invertierbar ist, und berechnen Sie gegebenenfalls die inverse Matrix. Lösen Sie anschließend die linearen Gleichungssysteme $A \cdot x = b$ und $A \cdot x = c$ mit den Vektoren

$$b = \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix} \quad \text{und} \quad c = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

Aufgabe 2 (4 Punkte)

Zeigen Sie, dass die Matrix

invertierbar ist, und bestimmen Sie A^{-1} .

(bitte wenden)

- (a) Geben Sie eine 2×2 -Matrix A an, deren zugehörige lineare Abbildung $f_A : \mathbb{R}^2 \to \mathbb{R}^2$ einer Drehung um 60° gegen den Uhrzeigersinn entspricht. (Mit anderen Worten: Ist $x \in \mathbb{R}^2$ ein Vektor, so soll $A \cdot x$ der um 60° gedrehte Vektor sein.)
- (b) Vergewissern Sie sich, dass A invertierbar ist, und berechnen Sie die inverse Matrix A^{-1} mit Hilfe von elementaren Zeilenumformungen. Wie wirkt die zugehörige lineare Abbildung $f_{A^{-1}}$ auf einen Vektor $x \in \mathbb{R}^2$?
- (c) Wie wirkt die Multiplikation mit $A^6 = A \cdot A \cdot A \cdot A \cdot A \cdot A$ auf einen Vektor $x \in \mathbb{R}^2$? Bestimmen Sie A^6 , ohne das Produkt auszurechnen.
- (d) Geben Sie eine 2×2 -Matrix B an, deren zugehörige lineare Abbildung $f_B : \mathbb{R}^2 \to \mathbb{R}^2$ einem Vektor $x \in \mathbb{R}^2$ den an der x_1 -Achse gespiegelten Vektor zuordnet.
- (e) Gesucht ist nun schließlich eine 2×2 -Matrix C, deren zugehörige lineare Abbildung f_C : $\mathbb{R}^2 \to \mathbb{R}^2$ einem Vektor $x \in \mathbb{R}^2$ den Vektor zuordnet, den man erhält, wenn man x zuerst um 60° gegen den Uhrzeigersinn dreht und dann an der x_1 -Achse spiegelt. Berechnen Sie C mit Hilfe von A und B.

Aufgabe 4

(0.5+0.5+1+1=3 Punkte)

Berechnen Sie die Determinanten der folgenden Matrizen:

$$A = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} \\ 4 & -6 \end{pmatrix} \qquad B = \begin{pmatrix} 2b - 3 & b + 1 \\ 2b & -b \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & -2 & 0 \\ 2 & -1 & 4 \\ 3 & 0 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} d & -1 & -1 \\ 2 & 0 & -d \\ -1 & 2 & 0 \end{pmatrix}$$

Aufgabe 5

(1+2+3*=3+3* Punkte)

Betrachten Sie die Matrix

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

- (a) Zeigen Sie mit Hilfe von Satz 2.10 aus der Vorlesung, dass A invertierbar ist.
- (b) Berechnen Sie $A^3 3A^2 + 4E_3$.
- (c) Verwenden Sie das Ergebnis aus Teil (b) zur Berechnung von A^{-1} . (Hinweis: Finden Sie eine Matrix B mit $A \cdot B = E_3$.)