UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier Dominik Schillo

Seminar zur Analysis

im Wintersemester 2014/15 Einführung in die Theorie der Fourierreihen

Maßtheoretische Grundlagen

1 σ -Algebren, messbare Funktionen und Maße

Seien X eine beliebige Menge und P(X) die Potenzmenge von X.

Definition 1.1. Ein System $\mathcal{A} \subset P(X)$ heißt σ -Algebra, falls die folgenden Eigenschaften erfüllt sind:

- (i) $\emptyset, X \in \mathcal{A}$,
- (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- (iii) (A_n) Folge von Mengen in $A \Rightarrow \bigcup_{n=1}^{\infty} A_n \in A$.

Bemerkung 1.2. Sei $(A_i)_{i\in I}$ eine Familie von σ -Algebra auf X. Dann ist $\bigcap_{i\in I} A_i$ eine σ -Algebra auf X.

Definition 1.3. (i) Sei

$$\mathfrak{B}\left(\mathbb{R}^{N}\right) = \bigcap \left(\mathcal{A}; \, \mathcal{A} \subset P\left(\mathbb{R}^{N}\right) \, \sigma\text{-Algebra mit } U \in \mathcal{A} \text{ für alle offenen } U \subset \mathbb{R}^{N}\right),$$

d.h. $\mathfrak{B}(\mathbb{R}^N)$ ist die kleinste σ -Algebra auf \mathbb{R}^N , die alle offenen Mengen enthält. Wir nennen $\mathfrak{B}(\mathbb{R}^N)$ die Borelsche σ -Algebra auf \mathbb{R}^N .

(ii) Eine Funktion $f: \mathbb{R}^N \to \mathbb{C}$ heißt (Borel-)messbar, falls $f^{-1}(U) \in \mathfrak{B}\left(\mathbb{R}^N\right)$ für alle offenen Mengen $U \subset \mathbb{C}$.

Bemerkung 1.4. Eine Funktion $f: \mathbb{R}^N \to \mathbb{C}$ ist genau dann messbar, wenn $f^{-1}(A) \in \mathfrak{B}(\mathbb{R}^N)$ für alle $A \in \mathfrak{B}(\mathbb{C})$.

Satz 1.5. Seien $f, g: \mathbb{R}^N \to \mathbb{C}$ messbar und $\alpha \in \mathbb{C}$. Dann gilt:

- (i) Die Funktionen $f + g, \alpha f, f \cdot g, |f|, \text{Re}(f)$ und Im(f) sind messbar.
- (ii) Falls f reellwertig ist, sind $f^+ = \max(f, 0)$ und $f^- = \max(-f, 0)$ messbar mit $f = f^+ f^-$.
- (iii) Alle stetigen Funktionen $f: \mathbb{R}^N \to \mathbb{C}$ sind messbar.

Für jeden offenen Quader $Q=(a_1,b_1)\times\cdots\times(a_N,b_N)\subset\mathbb{R}^N$ $(a_i< b_i$ für $i=1,2,\ldots,N)$ sei

$$Vol(Q) = \prod_{i=1}^{N} (b_i - a_i)$$

das Volumen von Q.

Satz 1.6. Durch

 $\lambda \colon \mathfrak{B}\left(\mathbb{R}^N\right) \to [0,\infty],$

$$A \mapsto \inf \left\{ \sum_{n=1}^{\infty} \operatorname{Vol}(Q_n); \ (Q_n) \ Folge \ offener \ Quader \ mit \ A \subset \bigcup_{n=1}^{\infty} Q_n \right\}$$

wird eine Abbildung definiert mit

- (i) $\lambda(\emptyset) = 0$,
- (ii) Für eine Folge (A_n) disjunkter Mengen in $\mathfrak{B}(\mathbb{R}^N)$ gilt

$$\lambda\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \lambda\left(A_n\right).$$

Bemerkung 1.7. Man nennt eine auf einer σ-Algebra \mathcal{A} definierte Funktion $\mu \colon \mathcal{A} \to [0, \infty]$ mit (i) und (ii) ein $Ma\beta$ auf \mathcal{A} .

Definition 1.8. Das Maß λ aus Satz 1.6 heißt N-dimensionales Lebesgue-Maß.

2 Das Lebesgue Integral

Für $A \in \mathfrak{B}\left(\mathbb{R}^N\right)$ sei

$$\chi_A \colon \mathbb{R}^N \to \mathbb{R}, \ x \mapsto \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

die charakteristische Funktion von A. Eine Funktion der Form

$$f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$$

mit $n \in \mathbb{N}$, $\alpha_i \in \mathbb{C}$ und $A_i \in \mathfrak{B}(\mathbb{R}^N)$ für i = 1, 2, ..., n heißt einfache Funktion.

Definition 2.1. (i) Für eine einfache Funktion $f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$ wie oben mit $f \geq 0$ definiert man

$$\int_{\mathbb{R}^N} f(x) dx = \int f d\lambda = \sum_{i=1}^n \alpha_i \lambda(A_i).$$

(ii) Für eine messbare Funktion $f \geq 0$ definiert man

$$\int_{\mathbb{R}^N} f(x) dx = \sup \left\{ \int_{\mathbb{R}^N} g(x) dx; \ g \text{ einfach mit } 0 \le g \le f \right\} \in [0, \infty].$$

Die Funktion f heißt integrabel, falls $\int_{\mathbb{R}^N} f(x) dx < \infty$.

(iii) Eine messbare Funktion $f: \mathbb{R}^N \to \mathbb{C}$ heißt integrabel, falls $\text{Re}(f)^{\pm}$ und $\text{Im}(f)^{\pm}$ integrabel sind. Wir nennen

$$\int_{\mathbb{R}^N} f(x) dx = \left(\int_{\mathbb{R}^N} \operatorname{Re}(f)^+ d\lambda - \int_{\mathbb{R}^N} \operatorname{Re}(f)^- d\lambda \right) + i \left(\int_{\mathbb{R}^N} \operatorname{Im}(f)^+ d\lambda - \int_{\mathbb{R}^N} \operatorname{Im}(f)^- d\lambda \right)$$

das Lebesgue Integral von f.

Bemerkung 2.2. (i) Wir vereinbaren folgende Rechenregeln:

- (a) $x + \infty = \infty + x = \infty$ für alle $x \in \mathbb{R}$,
- (b) $x \cdot \infty = \infty$ für alle x > 0,
- (c) $0 \cdot \infty = 0$.
- (ii) Das Integral einer einfachen Funktion $f \geq 0$ in Definition 2.1 (i) ist wohldefiniert, d.h. unabhängig von der Darstellung von f.

Man nennt $A \subset \mathbb{R}^N$ eine Nullmenge, falls $A \in \mathfrak{B}\left(\mathbb{R}^N\right)$ und $\lambda(A) = 0$.

Definition 2.3. Man sagt, eine punktweise definierte Eigenschaft gilt *fast* überall (kurz: $f.\ddot{u}$.), falls es eine Nullmenge A gibt, sodass jeder Punkt $x \in A^c$ diese Eigenschaft hat.

Ein Beispiel hierfür wäre f = 0 f.ü.

Satz 2.4. Seien $f, g: \mathbb{R}^N \to \mathbb{C}$ integrabel und $\alpha \in \mathbb{C}$. Dann gilt:

(i) Die Funktionen f + g und αf sind integrabel und

$$\int (f+g)d\lambda = \int fd\lambda + \int gd\lambda, \quad \int (\alpha f)d\lambda = \alpha \int fd\lambda.$$

- (ii) Falls $f \leq g$, dann gilt $\int f d\lambda \leq \int g d\lambda$.
- (iii) Eine messbare Funktion $f: \mathbb{R}^N \to \mathbb{C}$ ist genau dann integrabel, wenn |f| integrabel ist. In diesem Fall gilt:
 - (a) $\left| \int f d\lambda \right| \le \int |f| d\lambda$.
 - (b) $\int |f| d\lambda = 0 \Leftrightarrow f = 0 f.\ddot{u}$.
- (iv) Falls $f = g f.\ddot{u}$, dann gilt $\int f d\lambda = \int g d\lambda$.

Definition 2.5. Sei $A \in \mathfrak{B}(\mathbb{R}^N)$. Eine funktion $f: A \to \mathbb{C}$ heißt messbar bzw. integrabel, falls die triviale Fortsetzung

$$\widetilde{f} \colon \mathbb{R}^N \to \mathbb{C}, \ x \mapsto \begin{cases} f(x), & x \in A, \\ 0, & x \notin A \end{cases}$$

diese Eigenschaft hat. Ist $f:A\to\mathbb{C}$ integrabel oder messbar und nichtnegativ, so setzt man

$$\int_{A} f(x) dx = \int_{\mathbb{R}^{N}} \widetilde{f}(x) dx.$$

Die Eigenschaften des Integrals aus Satz 2.4 gelten sinngemäß.

3 Konvergenzsätze

Sei $A \in \mathfrak{B}(\mathbb{R}^N)$ und seien f_1, f_2, \ldots und f messbare Funktionen auf A, sodass

$$\lim_{n \to \infty} f_n(x) = f(x)$$

für fast alle $x \in A$ gilt.

Satz 3.1 (Satz von der monotonen Konvergenz). Gilt

$$0 \le f_1(x) \le f_2(x) \le \dots$$

für fast alle $x \in A$, so ist

$$\int_{A} f(x) dx = \lim_{n \to \infty} \int_{A} f_n(x) dx.$$

Satz 3.2 (Satz von der majorisierten Konvergenz). Gibt es eine integrable Funktion g auf A mit

$$|f_n(x)| \le g(x)$$

für alle $n \in \mathbb{N}$ und fast alle $x \in A$, so ist f integrabel und es gilt

$$\int_{A} f(x) dx = \lim_{n \to \infty} \int_{A} f_n(x) dx.$$

4 Der Satz von Fubini

Seien $A \in \mathfrak{B}\left(\mathbb{R}^{N}\right)$ und $B \in \mathfrak{B}\left(\mathbb{R}^{N'}\right)$. Dann ist $A \times B \in \mathfrak{B}\left(\mathbb{R}^{N+N'}\right)$ und es gilt

$$\lambda(A \times B) = \lambda(A)\lambda(B).$$

Bemerkung 4.1. Die σ-Algebra $\mathfrak{B}\left(\mathbb{R}^{N+N'}\right)$ wird erzeugt von Mengen der Form $A \times B$ mit $A \in \mathfrak{B}\left(\mathbb{R}^{N}\right)$ und $B \in \mathfrak{B}\left(\mathbb{R}^{N'}\right)$.

Satz 4.2 (Satz von Fubini). Sei f integrrabel auf $A \times B$. Dann gilt:

(i) Für fast alle $x \in A$ ist der Schnitt

$$f_x \colon B \to \mathbb{C}, \ y \mapsto f(x,y)$$

integrabel. Für fast alle $y \in B$ ist der Schnitt

$$f^y \colon A \to \mathbb{C}, \ x \mapsto f(x,y)$$

integrabel.

(ii) Die Funktion

$$I_f \colon A \to \mathbb{C}, \ x \mapsto \begin{cases} \int_B f_x(y) \mathrm{d}y, & falls \ f_x \ integrabel, \\ 0, & sonst \end{cases}$$

ist integrabel.

Die Funktion

$$J_f \colon B \to \mathbb{C}, \ y \mapsto \begin{cases} \int_A f^y(x) \mathrm{d}x, & falls \ f^y \ integrabel, \\ 0, & sonst \end{cases}$$

ist integrabel.

(iii) Es gilt:

$$\int_{A\times B} f(t)dt = \int_A I_f(x)dx = \int_B J_f(y)dy.$$

Bemerkung 4.3. Man schreibt (iii) oft in der Form

$$\int_{A \times B} f(t) dt \int_{A} \left(\int_{B} f(x, y) dy \right) dx = \int_{B} \left(\int_{A} f(x, y) dx \right) dy$$

und sagt "die Reihenfolge der Integration darf vertauscht werden".

5 Die Transformationsformel

Sei $U \subset \mathbb{R}^N$ offen und sei $T \colon U \to \mathbb{R}^N$ differenzierbar. Dann bezeichnet

$$J_T(x) = \begin{pmatrix} \partial_1 T_1(x) & \cdots & \partial_N T_1(x) \\ \vdots & & \vdots \\ \partial_1 T_N(x) & \cdots & \partial_N T_N(x) \end{pmatrix}$$

die Jacobi-Matrix von T im Punkt $x \in U$.

Satz 5.1. Seien $U, V \subset \mathbb{R}^N$ offen und sei $T: U \to V$ eine bijektive Abbildung, sodass T und T^{-1} stetig differenzierbar sind. Dann gilt für jede integrable Funktion $f: V \to \mathbb{C}$ die Gleichung

$$\int_{V} f(y) dy = \int_{U} f(T(x)) \left| \det(J_{T}(x)) \right| dx.$$

6 Der Zusammenhang zwischen Riemann- und Lebesgue Integral

Satz 6.1. Sei $[a,b] \subset \mathbb{R}$ ein kompaktes Intervall und $f:[a,b] \to \mathbb{R}$ eine beschränkte Funktion. Dann gilt:

- (i) Die Funktion f ist genau dann Riemann integrabel, wenn sie in fast jedem Punkt aus [a, b] stetig ist.
- (ii) Ist f Riemann integrabel, dann ist f auch Lebesgue integrabel und das Riemann- und das Lebesgue Integral stimmen überein.

Bemerkung 6.2. Nicht jede Lebesgue integrable Funktion ist Riemann integrabel. Zum Beispiel ist die charakteristische Funktion

$$f : [0,1] \to \mathbb{R}, \ x \mapsto \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & \text{sonst} \end{cases}$$

Lebesgue integrabel mit

$$\int_{[0,1]} f(x) \mathrm{d}x = 0,$$

aber sie ist nicht Riemann integrabel.

7 Die Räume \mathcal{L}^p und L^p

Definition 7.1. Für $1 \le p < \infty$ sei

$$\mathcal{L}^{p} = \left\{ f \colon \mathbb{R} \to \mathbb{C}; \ f \text{ ist } 2\pi\text{-periodisch und } \|f\|_{p} < \infty \right\}$$

mit

$$||f||_p = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^p dx\right)^{\frac{1}{p}}$$

und

$$\mathcal{L}^{\infty} = \{f \colon \mathbb{R} \to \mathbb{C}; \ f \text{ ist } 2\pi\text{-periodisch und} \, \|f\|_{\infty} < \infty\}$$

mit

$$||f||_{\infty} = \inf_{\substack{N \subset \mathbb{R} \\ \text{Nullmenge}}} \left\{ \sup \left\{ |f(x)| \; ; \; x \in \mathbb{R} \setminus N \right\} \right\}.$$

Bemerkung 7.2. (i) Falls $f \in \mathcal{L}^{\infty}$, so ist $\{x \in \mathbb{R}; |f(x)| > ||f||_{\infty}\}$ eine Nullmenge.

(ii) Falls $f \in \mathcal{L}^p$ mit $||f||_p = 0$, so ist f = 0 fast überall.

Definition 7.3. (i) Für $1 \le p \le \infty$ sei $\mathcal{N}^p = \{f \in \mathcal{L}^p; \|f\|_{\infty} = 0\}.$

(ii) Für $1 \le p \le \infty$ sei $L^p = \mathcal{L}^p/\mathcal{N}^p$. Also besteht der Raum L^p aus den Äquivalenzklassen bzgl. der Äquivalenzrelation

$$f \sim g \Leftrightarrow f - g \in \mathcal{N}^p \quad \text{für } f, g \in \mathcal{L}^p.$$

Satz 7.4. Sei $1 \le p \le \infty$. Dann gilt:

- (i) Die Mengen \mathcal{L}^p und L^p sind \mathbb{C} -Vektorräume.
- (ii) Durch $||f + \mathcal{N}^p||_p = ||f||_p$ wird eine Norm auf L^p definiert, d.h. für alle $f, g \in L^p$ und $\alpha \in \mathbb{C}$ gilt
 - (a) $||f||_p = 0 \Leftrightarrow f = 0$,
 - (b) $\|\alpha f\|_p = |\alpha| \|f\|_p$,
 - (c) $||f + g||_p \le ||f||_p + ||g||_p$.
- (iii) Der Raum L^p ist ein Banachraum.

(iv) Ist $1 \le p < \infty$ und $f \in L^p$, so existiert eine Folge

$$(f_n)_{n\in\mathbb{N}}\subset\{f\colon\mathbb{R}\to\mathbb{C};\ f\ stetig\ und\ 2\pi\text{-periodisch}\}$$

 $mit \|f - f_n\|_p \to 0 \text{ für } n \to \infty.$ Man sagt, die stetigen, 2π -periodischen Funktionen sind dicht in L^p für $1 \le p < \infty$.

- Bemerkung 7.5. (i) Die Ungleichung (c) in (ii) nennt man die Dreiecks-Ungleichung.
 - (ii) Für $1 gilt <math>L^1 \supset L^p \supset L^q \subset L^\infty$.