UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M.Sc. Daniel Kraemer

Übungen zur Vorlesung Funktionentheorie II

Wintersemester 2015/16

Blatt 6	Abgabetermin: Mittwoch, 09.12.2015

Aufgabe 21 (3 Punkte)

Sei $n \geq 2$, $U \subset \mathbb{C}^n$ offen und $f \in \mathcal{O}(U)$. Zeigen Sie, dass die Nullstellenmenge

$$Z(f) = \{ z \in U; \ f(z) = 0 \}$$

keine isolierten Punkte besitzen kann.

Aufgabe 22 (1+3=4 Punkte)

Seien $\epsilon > 0$ und $0 \neq f \in \mathcal{O}(B_{\epsilon}(0))$.

(a) Zeigen Sie, dass f eine eindeutige kompakt gleichmäßig konvergente Reihenentwicklung der Form

$$f(z) = \sum_{k=0}^{\infty} p_k(z) \quad (z \in B_{\epsilon}(0))$$

mit homogenen Polynomen $p_k \in \mathbb{C}[z_1,\ldots,z_n]$ vom Grade k besitzt. (Hinweis: Aufgabe 6.)

(b) Seien p_k $(k \in \mathbb{N})$ wie in (a) und sei m die kleinste natürliche Zahl mit $p_m \neq 0$. Zeigen Sie, dass eine unitäre Matrix $U \in M(n, \mathbb{C})$ existiert so, dass die Funktion

$$B_{\epsilon}(0) \to \mathbb{C}, \ z \mapsto f(Uz)$$

 z_n -regulär von der Ordnung m in 0 ist. (Hinweis: Wenden Sie Lemma 4.2 auf p_m an.)

Für eine offene Menge $D \subset \mathbb{C}^n$ nennt man $A \subset D$ analytisch in D, falls A abgeschlossen in D ist und zu jedem $a \in A$ eine offene Umgebung U von a und eine holomorphe Abbildung $h \in \mathcal{O}(U,\mathbb{C}^m)$ existieren, so dass $A \cap U = Z(h)$.

Aufgabe 23 (2+1+1=4 Punkte)

Seien $D \subset \mathbb{C}^n, D_1 \subset \mathbb{C}^{n_1}, D_2 \subset \mathbb{C}^{n_2}$ offene Mengen. Zeigen Sie:

- (a) Endliche Vereiningungen und endliche Durchschnitte analytischer Mengen in *D* sind wieder analytisch in *D*.
- (b) Sind $A_1 \subset D_1$, $A_2 \subset D_2$ analytisch, so ist $A_1 \times A_2 \subset D_1 \times D_2$ analytisch.
- (c) Ist $f: D_1 \to D_2$ holomorph und $A \subset D_2$ analytisch, so ist $f^{-1}(A) \subset D_1$ analytisch.

(bitte wenden)

Aufgabe 24 (2+2=4 Punkte)

Sei $M \subset \mathbb{C}^n$ eine komplexe Untermannigfaltigkeit. Zeigen Sie:

(a) Es gibt eine offene Menge $D \subset \mathbb{C}^n$, so dass $M \subset D$ abgeschlossen in D ist.

(b) Ist $D \subset \mathbb{C}^n$ offen, so dass $M \subset D$ abgeschlossen in D ist, so ist M analytisch in D.

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre/ws1516/ft2