Schatten-p-class perturbations of Toeplitz operators

Dominik Schillo

09.05.2016

Content

- 1 The classical problem
- 2 Constraints and formulation of the problem
 - Toeplitz operators
 - Regular triples
 - Henkin measures
- 3 Main result
 - Proof
- 4 Open questions

Let $\mathbb T$ be the unit circle in $\mathbb C$ with the canonical probability measure m.

Definition

We call

$$H^2(m)=\left\{f\in L^2(m)\;;\;\hat{f}(n)=0\; ext{for all}\;n<0
ight\}\subset L^2(m)$$

the Hardy space with respect to m.

Let $f \in L^{\infty}(m)$. We call the compression of the multiplication operator

$$M_f \colon L^2(m) \to L^2(m), \ g \mapsto fg$$

to $H^2(m)$ the *Toeplitz operator with symbol* f and denote it by T_f , i.e.

$$T_f = P_{H^2(m)} M_f |_{H^2(m)},$$

where $P_{H^2(m)} \colon L^2(m) \to H^2(m)$ is the orthogonal projection onto $H^2(m)$.

An operator $X \in B(H^2(m))$ is a Toeplitz operator (i.e. there exists a $f \in L^{\infty}(m)$ such that $X = T_f$) if and only if

$$T_z^*XT_z-X=0,$$

where $z \in L^{\infty}(m)$ is the identity map.

Define

$$H^{\infty}(m) = L^{\infty}(m) \cap H^{2}(m) \subset L^{\infty}(m)$$

and we call

$$I_m=\{f\in H^\infty(m)\;;\;|f|=1\; m ext{-a.e.}\}$$

the set of inner functions with respect to m.

Theorem (Brown-Halmos condition II)

An operator $X \in B(H^2(m))$ is a Toeplitz operator if and only if

$$T_u^*XT_u-X=0$$

An operator $X \in B(H^2(m))$ is a finite rank Toeplitz perturbation (i.e. there exist a $f \in L^{\infty}(m)$ and $F \in F(H^2(m))$ such that $X = T_f + F$) if and only if

$$T_u^*XT_u-X\in F(H^2(m))$$

Theorem (Xia, 2009)

An operator $X \in B(H^2(m))$ is a compact Toeplitz perturbation (i.e. there exist a $f \in L^{\infty}(m)$ and $K \in K(H^2(m))$ such that $X = T_f + K$) if and only if

$$T_u^*XT_u-X\in K(H^2(m))$$

Let $p \in [1, \infty)$ and let H be a Hilbert space. An operator $S \in B(H)$ is a *Schatten-p-class* operator if

$$||S||_p^p = \operatorname{tr}(|S|^p) = \sum_{e \in \mathcal{E}} \langle |S|^p e, e \rangle = \sum_{e \in \mathcal{E}} \left\langle (S^*S)^{\frac{p}{2}} e, e \right\rangle < \infty$$

for some orthonormal basis ${\mathcal E}$ of H. Furthermore, we set

$$S_p(H) = \left\{ S \in B(H) ; \|S\|_p < \infty \right\}$$

equipped with $\left\|\cdot\right\|_p$ and

$$\mathcal{S}_0(H) = F(H)$$
 as well as $\mathcal{S}_\infty(H) = K(H)$

both equipped with the operator norm.

Theorem

Let $p \in \{0\} \cup [1, \infty]$. An operator $X \in B(H^2(m))$ is a $S_p(H^2(m))$ Toeplitz perturbation (i.e. there exist a $f \in L^{\infty}(m)$ and $S \in \mathcal{S}_p(H^2(m))$ such that $X = T_f + S$ if and only if

$$T_u^*XT_u-X\in\mathcal{S}_p(H^2(m))$$

Definition

Let $\mathbb D$ be the unit disc in $\mathbb C$ and $\mathcal O(\mathbb D)$ be the set of all scalar-valued analytic functions on $\mathbb D$. We call

$$A(\mathbb{D}) = \left\{ f \in C(\overline{\mathbb{D}}) \; ; \; f|_{\mathbb{D}} \in \mathcal{O}(\mathbb{D}) \right\}$$

the disc algebra.

Proposition

The following statements hold.

(i)
$$H^2(m) = \overline{A(\mathbb{D})|_{\mathbb{T}}}^{\tau_{\|\cdot\|_{L^2(m)}}}$$
.

(ii)
$$H^{\infty}(m) = \overline{A(\mathbb{D})|_{\mathbb{T}}}^{\tau_{w^*}}$$
.

(iii)
$$H^{\infty}(m)H^2(m) \subset H^2(m)$$
.

Let D be a bounded domain in \mathbb{C}^n .

Definition

We denote by

- (i) $A(D) = \{ f \in C(\overline{D}) ; f|_D \in \mathcal{O}(D) \} \subset C(\overline{D})$ the domain algebra of D,
- (ii) $S = \partial_{A(D)}$ the *Shilov boundary* of A(D) (i.e. the smallest closed subset of \overline{D} such that

$$\sup_{z \in \overline{D}} |f(z)| = \sup_{z \in S} |f(z)|$$

for all $f \in A(D)$.

Toeplitz operators

Exampl<u>es</u>

(i)
$$D = \mathbb{B}_n$$
: $S = \partial \mathbb{B}_n$

(ii)
$$D = \mathbb{D}^n$$
: $S = \mathbb{T}^n$

(iii) D strictly pseudoconvex: $S = \partial D$.

Let $\mu \in M^+(S)$ be a positive Borel measure on S.

Definition

We define

$$H^2(\mu) = \overline{A(D)|_{\mathcal{S}}}^{\tau_{\|\cdot\|_{L^2(\mu)}}} \subset L^2(\mu)$$

and

$$H^{\infty}(\mu) = \overline{A(D)|_{S}}^{\tau_{w^*}} \subset L^{\infty}(\mu).$$

Furthermore, we denote by

$$I_{\mu}=\{f\in H^{\infty}(\mu)\;;\;|f|=1\;\mu ext{-a.e.}\}$$

the set of inner functions with respect to μ .

Definition

Let $f \in L^{\infty}(\mu)$. We call

$$T_f \colon H^2(\mu) \to H^2(\mu), \ g \mapsto P_{H^2(\mu)}(fg),$$

where $P_{H^2(\mu)} \colon L^2(\mu) \to H^2(\mu)$ is the orthogonal projection onto $H^2(\mu)$, the Toeplitz operator with symbol f.

Regular triples

Definition

Let $K \subset \mathbb{C}^n$ be a compact set, $A \subset C(K)$ be a closed subalgebra and $\nu \in M^+(K)$ a positive Borel measure.

(i) The triple (A, K, ν) is called *regular (in the sense of Aleksandrov)* if for every $\varphi \in C(K)$ with $\varphi > 0$, there exists a sequence of functions $(\varphi_k)_{k \in \mathbb{N}}$ in A with $|\varphi_k| < \varphi$ on K for all $k \in \mathbb{N}$ and

$$\lim_{k\to\infty}|\varphi_k|=\varphi$$

 ν -almost everywhere on K.

(ii) The measure ν is called *continuous* if every one-point set has ν -measure zero

Examples

- (i) $A = A(\mathbb{B}_n)|_{\partial \mathbb{B}_n}, K = \partial \mathbb{B}_n, \nu = \sigma.$
- (ii) $A = A(\mathbb{D}^n)|_{\mathbb{T}^n}, K = \mathbb{T}^n, \nu = \otimes_n m.$

Theorem (Aleksandrov, 1984)

Let (A, K, ν) be a regular triple with a continuous measure ν in $M^+(K)$. Then the weak* sequential closure of the set I_{ν} contains all $L^{\infty}(\nu)$ -equivalence classes of functions $f \in A$ with $|f| \leq 1$ on K.

Let $\mu \in M_1^+(S)$ and $(A(D)|_S, S, \mu)$ be a regular triple.

Theorem

An operator $X \in B(H^2(\mu))$ is a Toeplitz operator if and only if

$$T_u^*XT_u-X=0$$

for all $u \in I_{\mu}$.

Henkin measures

Definition

We denote by $H^{\infty}(D) \subset \mathcal{O}(D)$ the set of all bounded analytic functions on D.

Proposition

The following statements hold:

- (i) The space $H^{\infty}(D) \subset L^{\infty}(D) = (L^{1}(D))'$ is weak* closed.
- (ii) The space $L^1(D)/^{\perp}H^{\infty}(D)$ is separable with

$$H^{\infty}(D) \cong \left(L^{1}(D)/^{\perp}H^{\infty}(D)\right)'.$$

(iii) The closed unit ball $\overline{B}_1^{H^{\infty}(D)}(0)$ equipped with the relative topology of the weak* topology of $H^{\infty}(D)$ is a compact metrizable space.

Theorem

The map

$$r_m \colon H^{\infty}(\mathbb{D}) \to H^{\infty}(m), \ \theta \mapsto \tau_{w^*} - \lim_{r \to 1} [\theta(r \cdot)] =: \theta^*$$

is an isometric isomorphism and weak* homeomorphism with $r_m(\theta|_{\mathbb{D}}) = [\theta|_{\mathbb{T}}]$ for all $\theta \in A(\mathbb{D})$.

Definition

We call μ a (faithful) Henkin measure if there is a contractive (isometric) weak* continuous algebra homomorphism

$$r_{\mu} \colon H^{\infty}(D) \to L^{\infty}(\mu), \ \theta \mapsto r_{\mu}(\theta) =: \theta^{*}$$

with $r_{\mu}(\theta|_D) = [\theta|_S]$ for all $\theta \in A(D)$.

0000

Let $\mu \in M_1^+(S)$ be a faithful Henkin measure.

Remark

The map $r_{\mu} \colon H^{\infty}(D) \to \operatorname{Im}(r_{\mu})$ is an isometric isomorphism and weak* homeomorphism with weak* closed range.

Henkin measures

Proposition

We have

$$H^{\infty}(\mu) \subset \operatorname{Im}(r_{\mu}).$$

Examples

(i)
$$D = \mathbb{B}_n, \mu = \sigma$$

(ii)
$$D = \mathbb{D}^n, \mu = \otimes_n m$$

Theorem

Let $p \in [1, \infty)$. An operator $X \in B(H^2(\mu))$ is a $\mathcal{S}_p(H^2(\mu))$ Toeplitz perturbation (i.e. there exists a $f \in L^\infty(\mu)$ and $S \in \mathcal{S}_p(H^2(\mu))$ such that $X = T_f + S$) if and only if

$$T_u^*XT_u-X\in\mathcal{S}_p(H^2(\mu))$$

for all $u \in I_{\mu}$.

•00000

Proposition

Let $(\alpha_k)_{k\in\mathbb{N}}$ be a sequence in $H^{\infty}(\mu)$ with

$$\tau_{w^*} - \lim_{k \to \infty} \alpha_k = \alpha \in \mathbb{C} \setminus (\mathbb{T} \cup \{0\})$$

and $X \in B(H^2(\mu))$ an operator such that

$$Y = \tau_{\mathsf{WOT}} - \lim_{k \to \infty} T_{\alpha_k}^* X T_{\alpha_k} \in \mathcal{B}(H^2(\mu))$$

exists. If $T_u^*XT_u - X \in \mathcal{S}_{\infty}(H^2(\mu))$ for all $u \in I_{\mu}$, then there exists a function $f \in L^{\infty}(\mu)$ such that

$$X = T_f + \frac{1}{1 - |\alpha|^2} (X - Y).$$

000000

Proposition (Hiai, 1997)

The map

$$\|\cdot\|_p:(B(H^2(\mu)), au_{\mathsf{WOT}}) o [0,\infty],\ S\mapsto \|S\|_p$$

is lower semi-continuous.

We denote by

The classical problem

$$I_D = \{\theta \in H^{\infty}(D) ; \theta^* \in I_{\mu}\}$$

the set of inner functions with respect to D.

Proposition

Let $p \in [1, \infty]$. Suppose that $X \in B(H^2(\mu))$ is an operator such that

$$T_u^*XT_u - X \in \mathcal{S}_p(H^2(\mu))$$

for all $u \in I_u$. Then, for all sequences $(\theta_k)_{k \in \mathbb{N}}$ in I_D with

$$\tau_{w^*}$$
 - $\lim_{k \to \infty} \theta_k^* = 1$,

we have

$$\tau_{\|\cdot\|_p} - \lim_{k \to \infty} T_{\theta_k^*}^* X T_{\theta_k^*} - X = 0.$$

000000

Proof

Proposition

Let $(\theta_k)_{k\in\mathbb{N}}$ be a sequence in I_D . Then the following statements are equivalent:

(i)
$$\tau_{w^*}$$
 - $\lim_{k\to\infty} \theta_k^* = 1$,

(ii)
$$\lim_{k\to\infty} \int_S \theta_k^* d\mu = 1$$
,

(iii) There exists
$$w \in D$$
 such that $\lim_{k \to \infty} \theta_k(w) = 1$.

000000

Proposition

The classical problem

Let $p \in [1, \infty]$. Suppose that $X \in B(H^2(\mu))$ is an operator such that

$$T_u^*XT_u - X \in \mathcal{S}_p(H^2(\mu))$$

for all $u \in I_{\mu}$. Then, for all $\varepsilon > 0$, there is a $\delta = \delta(\varepsilon) > 0$ such that

$$\|T_{\theta^*}^* X T_{\theta^*} - X\|_p \le \varepsilon$$

for all $\theta \in I_D$ with $\left| \int_{S} 1 - \theta^* d\mu \right| \leq \delta$.

Proof

The classical problem

Let $D \subset \mathbb{C}^n$ be a bounded domain and let $\mu \in M_1^+(S)$ be a continuous faithful Henkin probability measure such that $(A(D)|_{S}, S, \mu)$ is a regular triple in the sense of Aleksandrov.

Theorem

Let $p \in [1, \infty)$. An operator $X \in B(H^2(\mu))$ is a $S_p(H^2(\mu))$ Toeplitz perturbation (i.e. there exists a $f \in L^{\infty}(\mu)$ and $S \in \mathcal{S}_p(H^2(\mu))$ such that $X = T_f + S$) if and only if

$$T_u^*XT_u-X\in\mathcal{S}_p(H^2(\mu))$$

for all $u \in I_{\mu}$.

Questions

- (i) For which regular triple (A, K, μ) does the result holds?
- (ii) Are there other ideals for which the result holds?
- (iii) What about $p = 0, \infty$?