

K-contractions

Dominik Schillo

46th Canadian Operator Symposium, 2018-06-04

Joint work with Jörg Eschmeier (Saarland University)

Contractions

Let \mathcal{H} be a complex Hilbert space.

Lemma

Let $T \in B(\mathcal{H})$. The following assertions are equivalent:

1 T is a contraction (i.e.,
$$\|T\| \leq 1$$
),

2
$$1/K(T, T^*) \ge 0$$
, where

$$\mathcal{K} \colon \mathbb{D} imes \mathbb{D} o \mathbb{C}, \; (z,w) \mapsto rac{1}{1-z\overline{w}} = rac{1}{1-\langle z,w
angle}$$

is the reproducing kernel of the Hardy space on the unit disc $H^2(\mathbb{D})$.

Example

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies $\frac{1}{K}(M_z, M_z^*) = P_{\mathbb{C}} \ge 0.$ 2 Every unitary $U \in B(\mathcal{H})$ fulfills $\frac{1}{K}(U, U^*) = 0.$

We say that a contraction $T \in B(\mathcal{H})$ belongs to the class $C_{.0}$ or is *pure* if

$$T_{\infty} = \tau_{\text{SOT}} \lim_{N \to \infty} T^N T^{*N} = 0.$$

Example

The shift operator $M_z \in B(H^2(\mathbb{D}))$ belongs to $C_{\cdot 0}$.

Theorem

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_{\mathcal{T}}\colon \mathcal{H} \to H^2(\mathbb{D}, \mathcal{D}_{\mathcal{T}}), \ h \mapsto \sum_{k=0}^{\infty} (D_{\mathcal{T}} T^{*k} h) z^k,$$

where $D_T = (1 - TT^*)^{1/2} = (1/K(T, T^*))^{1/2}$ and $D_T = \overline{D_T H}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle T_\infty h, h \rangle$$

for all $h \in \mathcal{H}$, and

$$\pi_T T^* = (M_z^{\mathcal{D}_T})^* \pi_T.$$

Corollary

A contraction $T \in B(\mathcal{H})$ is in C₀ if and only if π_T is an isometry.

K-contractions

The $C_{.0}$ case

Corollary

Let $T \in B(\mathcal{H})$ be an operator. The following statements are equivalent:

1 T is a contraction which belongs to $C_{.0}$,

 2 there exist a Hilbert space D, and an isometry π: H → H²(D, D) such that

$$\pi T^* = (M_z^{\mathcal{D}})^* \pi.$$

A Beurling type theorem

Remark

If $T \in B(\mathcal{H})$ is a C_0 contraction and $S \in Lat(T)$, then $T|_S$ is also C_0 contraction.

Theorem

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H^2(\mathbb{D}, \mathcal{E})$, the following statements are equivalent:

1
$$\mathcal{S} \in Lat(M_z^{\mathcal{E}})$$
,

2 there exist a Hilbert space \mathcal{D} , and an analytic function $\theta \colon \mathbb{D} \to B(\mathcal{D}, \mathcal{E})$ such that

 $M_{\theta} \colon H^{2}(\mathbb{D}, \mathcal{D}) \to H^{2}(\mathbb{D}, \mathcal{E}), \ f \mapsto \theta f$

is a partial isometry with $Im(M_{\theta}) = S$.

The general case

Theorem

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

1
$$1/K(T, T^*) \ge 0$$
,

 2 there exist Hilbert spaces D and K, an unitary operator U ∈ B(K), and an isometry Π: H → H_K(D) ⊕ K such that ΠT* = (M^D_z ⊕ U)*Π.

Question

For which reproducing kernels K does an analogue theorem hold? What happens if we look at commuting tuples $T = (T_1, \ldots, T_n) \in B(\mathcal{H})^n$?

Unitarily invariant spaces on \mathbb{B}_n

Let $(a_k)_{k\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

$$k(z) = \sum_{k=0}^{\infty} a_k z^k \qquad (z \in \mathbb{D})$$

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc $\mathbb{D}.$ The map

$$K \colon \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{C}, \ (z, w) \mapsto \sum_{k=0}^{\infty} a_k \langle z, w \rangle^k$$

defines a semianalytic positive definite function and hence, there exists a reproducing kernel Hilbert space $H_K \subset \mathcal{O}(\mathbb{B}_n)$ with kernel K. The space H_K is a so called *unitarily invariant space on* \mathbb{B}_n .

Furthermore, we assume $\sup_{k \in \mathbb{N}} a_k/a_{k+1} < \infty$ such that the *K*-shift $M_z = (M_{z_1}, \ldots, M_{z_n}) \in B(H_K)^n$ is well-defined. Since *k* has no zeros in \mathbb{D} , the function

$$\frac{1}{k} \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto \frac{1}{k(z)}$$

is again holomorphic and hence admits a Taylor expansion

$$rac{1}{k}(z)=\sum_{k=0}^{\infty}c_kz^k\qquad(z\in\mathbb{D})$$

with a suitable sequence $(c_k)_{k\in\mathbb{N}}$ in \mathbb{R} .

Example

If a_k = 1 for all k ∈ N, then H_K is the Hardy space (n = 1) or the Drury-Arveson space (n ≥ 2).
 If ν > 0 and a_k = a^(ν)_k = (-1)^k (^{-ν}_k) for all k ∈ N, then K(z, w) = K^(ν)(z, w) = 1/((1 - (z, w))^ν) (z, w ∈ B_n),

i.e., $H_{K^{(\nu)}}$ is a weighted Bergman space.

The space H_K is an irreducible complete Nevanlinna-Pick space if and only if

$$c_k \leq 0$$

for all $k \geq 1$.

Let $T = (T_1, \ldots, T_n) \in B(\mathcal{H})^n$ be a commuting tuple. Define

$$\left(\frac{1}{K}\right)_{N}(T,T^{*}) = \sum_{k=0}^{N} c_{k} \sigma_{T}^{k}(1)$$

for all $N \in \mathbb{N}$, where

$$\sigma_{\mathcal{T}} \colon B(\mathcal{H}) \to B(\mathcal{H}), \ X \mapsto \sum_{i=1}^{n} T_{i}XT_{i}^{*}.$$

Furthermore, we write

$$\frac{1}{K}(T, T^*) = \tau_{\text{SOT}} - \lim_{N \to \infty} \left(\frac{1}{K}\right)_N (T, T^*)$$

if the latter exists.

Let $T \in B(\mathcal{H})^n$ be a commuting tuple.

1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.

2 We call T a row contraction if T is $K^{(1)}$ -contraction, i.e.,

$$\frac{1}{K^{(1)}}(T,T^*) = 1 - \sigma_T(1) \ge 0.$$

3 We call T a row unitary or spherical unitary if T is a row isometry (i.e. $\sigma_T(1) = 1$) and consists of normal operators.

Example

1 If
$$n = 1$$
, a row contraction is a contraction.

Proposition (Chen, 2012)

If there exists a $p \in \mathbb{N}$ such that

$$c_k \geq 0$$
 for all $k \geq p$ or $c_k \leq 0$ for all $k \geq p$

holds, then

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}.$$

Example

The condition above is satfisfied in the case of

- 1 weighted Bergman spaces,
- 2 irreducible complete Nevanlinna-Pick spaces.

From now on, we assume that the condition in the last proposition holds.

K-contractions

Let $T \in B(\mathcal{H})^n$ be a *K*-contraction. We define

$$\Sigma_N(T) = 1 - \sum_{k=0}^N a_k \sigma_T^k \left(\frac{1}{K}(T, T^*) \right)$$

for $\textit{N} \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists. If $\Sigma(T) = 0$, we call T K-pure.

Remark

If $K=K^{(1)}$ and $T\in B(\mathcal{H})^n$ is a row contraction, then $\Sigma_N(T)=\sigma_T^{N+1}(1)$

for all $N \in \mathbb{N}$, and hence,

$$\Sigma(T) = T_{\infty} \geq 0.$$

Proposition

Let $T \in B(\mathcal{H})^n$ be a K-contraction such that $\Sigma(T)$ exists. The map

$$\pi_{\mathcal{T}}\colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}_{\mathcal{T}}), \ h \mapsto \sum_{\alpha \in \mathbb{N}^n} \left(\mathsf{a}_{|\alpha|} \frac{|\alpha|!}{\alpha!} \mathcal{D}_{\mathcal{T}} \mathcal{T}^{*\alpha} h \right) z^{\alpha},$$

where $D_T = (1/K(T, T^*))^{\frac{1}{2}}$ and $D_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle \Sigma(T)h, h \rangle$$

for all $h \in \mathcal{H}$ and

$$\pi_T T_i^* = (M_{z_i}^{\mathcal{D}_T})^* \pi_T$$

for all i = 1, ..., n.

The pure case

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following statements are equivalent:

T is K-pure,

2 there exist a Hilbert space \mathcal{D} and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D})$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}})^* \Pi$$

for all i = 1, ..., n.

A Beurling type theorem

Theorem (Eschmeier, S.)

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H_{\mathcal{K}}(\mathcal{E})$, the following statements are equivalent:

1
$$S \in \text{Lat}(M_z^{\mathcal{E}})$$
 and $M_z^{\mathcal{E}}|_{S}$ is K-pure,

2 there exist a Hilbert space \mathcal{D} and an analytic function $\theta \colon \mathbb{B}_n \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H_{\mathcal{K}}(\mathcal{D}) \to H_{\mathcal{K}}(\mathcal{E}), \ f \mapsto \theta \cdot f$$

is a partial isometry with $Im(M_{\theta}) = S$.

The general case

Definition

We call a K-contraction $T \in B(\mathcal{H})^n$ strong if $\Sigma(T) \ge 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Remark

- **I** Every K-pure K-contraction is a strong K-contraction. Hence, the K-shift $M_z \in B(H_K)^n$ is a strong K-contraction.
- 2 Every spherical unitary is a strong K-contraction.

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following statements are equivalent:

- T is a strong K-contraction,
- there exist Hilbert spaces D, K, a spherical unitary U ∈ B(K)ⁿ, and an isometry Π: H → H_K(D) ⊕ K such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \quad (i = 1, \dots, n).$$

If we assume that H_K is regular, i.e., $\lim_{k\to\infty} a_k/a_{k+1} = 1$, then the above are also equivalent to

• there is a unital completely contractive linear map

$$\rho$$
: span $\{1, M_{z_i}, M_{z_i}M_{z_i}^*; i = 1, ..., n\} \rightarrow B(\mathcal{H})$ with
 $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \quad (i = 1, ..., n)$