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Definition

Let D be the open unit disc in C. We denote by

H2(D) =

{
f =

∞∑
n=0

anz
n ; an ∈ C,

∞∑
n=0

|an|2 <∞

}
⊂ O(D)

the (scalar-valued) Hardy space.

Definition

We call a bounded analytic function Φ: D→ C inner if ‖Φ‖D ≤ 1
and limr→1|Φ(rλ)| = 1 for almost all λ in the unit circle T.
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Theorem (Beurling, 1949)

LetM⊂ H2(D) be a non-zero closed subspace. The following are
equivalent.

1 M is invariant for z (i.e., zM⊂M).
2 There exists an inner function Φ such that

M = Φ · H2(D).
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Let X be a non-empty set.

Definition

Let k : X × X → C be a function. We call k a kernel and write
k � 0 if

(k(xi , xj))ni ,j=1 ∈ Cn×n

is positive semi-definite for every finite subset {x1, . . . , xn} ⊂ X .
The corresponding reproducing kernel Hilbert space on X is
denoted by Hk . Thus,

k(·, x) ∈ Hk for all x ∈ X

and

〈f , k(·, x)〉 = f (x) for all f ∈ Hk , x ∈ X .
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Example

1 If

s1 : D× D→ C, (z ,w) 7→ 1
1− zw

,

then Hs1 = H2(D).
Let d ≥ 1 be a natural number.

2 If

sd : Bd × Bd → C, (z ,w) 7→ 1
1− 〈z ,w〉

,

then Hsd = H2
d , the Drury–Arveson space on the unit ball in

Bd ⊂ Cd .
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Example

3 Let m ≥ 2 be a natural number. If

k(m) : Bd × Bd → C, (z ,w) 7→ 1
(1− 〈z ,w〉)m

,

then Hk(m) = Am(Bd), the weighted Bergman space on Bd .
4 If

k : Bd × Bd → C, (z ,w) 7→
∞∑
n=0

1
n + 1

〈z ,w〉n,

then Hk coincides with the Dirichlet space on Bd .
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Definition

Let E ,F be Hilbert spaces and let k, ` be kernels on X .
We write Mult(H` ⊗F ,Hk ⊗ E) for the space of B(F , E)-valued
functions on X that multiply H` ⊗F into Hk ⊗ E .
Furthermore, we often identify Φ ∈ Mult(H` ⊗F ,Hk ⊗ E) with its
associated multiplication operator MΦ : H` ⊗F → Hk ⊗ E .
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Theorem (Beurling, 1949; Lax, 1959; Halmos, 1961)

Let E be a Hilbert space and letM⊂ H2(D)⊗ E be a non-zero
closed subspace. The following are equivalent.

1 M is invariant for z .
2 There exist a Hilbert space F ⊂ E and an isometric multiplier

Φ ∈ Mult(H2(D)⊗F ,H2(D)⊗ E) such that

M = Φ(H2(D)⊗F).
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Theorem (Ball–Bolotnikov, 2013)

Let m ≥ 2 be a natural number. Let E be a Hilbert space and let
M⊂ Am(D)⊗ E be a non-zero closed subspace. The following are
equivalent.

1 M is invariant for z .
2 There exist an auxiliary Hilbert space F and a partially

isometric multiplier Φ ∈ Mult(H2(D)⊗F ,Am(D)⊗ E) such
that

M = Φ · (H2(D)⊗F).
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Theorem (Sarkar, 2015 & 2016)

Let E be a Hilbert space, let Hk ⊂ O(Bd) be a reproducing kernel
Hilbert space of analytic functions such that the coordinate
functions (z1, . . . , zd) form a row contraction on Hk (i.e.,∑d

n=1 MznM
∗
zn ≤ idHk

) and letM⊂ Hk ⊗ E be a non-zero closed
subspace. The following are equivalent.

1 M is invariant for z1, . . . , zd .
2 There exist an auxiliary Hilbert space F and a partially

isometric multiplier Φ ∈ Mult(H2
d ⊗F ,Hk ⊗ E) such that

M = Φ · (H2
d ⊗F).
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Remark

Let E be a Hilbert space, and let k : Bd × Bd → C be a kernel.
The following are equivalent.

1 coordinate functions (z1, . . . , zd) form a row contraction on
Hk .

2 k/sd � 0.
In this case, for a closed subspaceM⊂ Hk ⊗ E , the following are
equivalent.

1 M is invariant under multiplication by z1, . . . , zd .
2 M is Mult(Hsd )-invariant (i.e., invariant for all
ϕ ∈ Mult(Hsd )).
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Definition

A kernel k : X × X → C is said to be normalized if there exists a
point x0 ∈ X with k(x , x0) = 1 for all x ∈ X .

Definition/Theorem (Agler–McCarthy, 2000)

A normalized kernel s is a complete Nevanlinna–Pick kernel if and
only if s is non-vanishing and 1− 1/s � 0.

Example

1 The Drury–Arveson space and the Dirichlet space are complete
Nevanlinna–Pick spaces.

2 The weighted Bergman spaces are not complete
Nevanlinna–Pick spaces.
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Theorem (McCullough–Trent, 2000)

Let X be a set, let s be a normalized complete Nevanlinna–Pick
kernel on X . Let E be a Hilbert space and letM⊂ Hs ⊗ E be a
non-zero closed subspace. The following are equivalent.

1 M is Mult(Hs)-invariant.
2 There exist an auxiliary Hilbert space F and a partially

isometric multiplier Φ ∈ Mult(Hs ⊗F ,Hs ⊗ E) such that

M = Φ · (Hs ⊗F)
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Theorem (Clouâtre–Hartz–S., 2019)

Let X be a set, let k be a kernel on X and let s be a normalized
complete Nevanlinna–Pick kernel on X such that k/s � 0. Let E be
a Hilbert space and letM⊂ Hk ⊗ E be a non-zero closed
subspace. The following are equivalent.

1 M is Mult(Hs)-invariant.
2 There exist an auxiliary Hilbert space F and a partially

isometric multiplier Φ ∈ Mult(Hs ⊗F ,Hk ⊗ E) such that

M = Φ · (Hs ⊗F).

Idea of the proof.

(1) =⇒ (2): Show that kM/s � 0, where kM is the reproducing
kernel ofM. (Here we use the fact that s is a normalized complete
Nevanlinna–Pick space.) Then use Kolmogorov’s factorization
theorem to obtain Φ.
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Theorem (Clouâtre–Hartz–S., 2019)

Assume the setting of the main theorem.
Let N ⊂M ⊂ Hk ⊗ E be two non-zero closed subspaces and let
F ,G be Hilbert spaces.
If Φ ∈ Mult(Hs ⊗F ,Hk ⊗ E) and Ψ ∈ Mult(Hs ⊗ G,H` ⊗ E) are
partially isometric multipliers with

M = Φ · (Hs ⊗F) and N = Ψ · (Hs ⊗ G),

then there exists a contractive multiplier
Γ ∈ Mult(Hs ⊗ G,Hs ⊗F) with

Ψ = ΦΓ.
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Theorem (Clouâtre–Hartz–S., 2019)

Assume the setting of main theorem.
Let N ⊂M ⊂ Hk ⊗ E be two non-zero closed subspaces and let F
be a Hilbert space.
If Φ ∈ Mult(Hs ⊗F ,Hk ⊗E) is a partially isometric multiplier with

M = Φ · (Hs ⊗F)

and if N is Mult(Hs)-invariant, then there exist a Hilbert space G
and a partially isometric multiplier Γ ∈ Mult(Hs ⊗ G,Hs ⊗F) such
that ΦΓ ∈ Mult(Hs ⊗ G,Hk ⊗ E) is a partially isometric multiplier
and

N = (ΦΓ) · (Hs ⊗ G).
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