

A Beurling–Lax–Halmos Theorem for Spaces with a Complete Nevanlinna-Pick Factor

Dominik Schillo

30th IWOTA, 2019-07-25

Joint work with Raphaël Clouâtre (University of Manitoba), Michael Hartz (FernUniversität in Hagen)

Classical Result	Reproducing Kernels	Generalizations	Results	References	
•0	0000	000000	000	0	DES SAARLANDES

Definition

Let \mathbb{D} be the open unit disc in \mathbb{C} . We denote by $H^{2}(\mathbb{D}) = \left\{ f = \sum_{n=0}^{\infty} a_{n} z^{n} ; a_{n} \in \mathbb{C}, \sum_{n=0}^{\infty} |a_{n}|^{2} < \infty \right\} \subset \mathcal{O}(\mathbb{D})$

the (scalar-valued) Hardy space.

Definition

We call a bounded analytic function $\Phi \colon \mathbb{D} \to \mathbb{C}$ inner if $\|\Phi\|_{\mathbb{D}} \leq 1$ and $\lim_{r \to 1} |\Phi(r\lambda)| = 1$ for almost all λ in the unit circle \mathbb{T} .

Classical Result	Reproducing Kernels	Generalizations	Resu
00	0000	000000	000

References 0

Theorem (Beurling, 1949)

Let $\mathcal{M} \subset H^2(\mathbb{D})$ be a non-zero closed subspace. The following are equivalent.

- **1** \mathcal{M} is invariant for z (i.e., $z\mathcal{M} \subset \mathcal{M}$).
- **2** There exists an inner function Φ such that

$$\mathcal{M} = \Phi \cdot H^2(\mathbb{D}).$$

Classical Result	Reproducing Kernels ●000	Generalizations	Results 000	References 0	UNIVERSITÄT Des Saarlandes
------------------	-----------------------------	-----------------	----------------	-----------------	----------------------------------

Let X be a non-empty set.

Definition

Let $k: X \times X \to \mathbb{C}$ be a function. We call k a *kernel* and write $k \succeq 0$ if

$$(k(x_i, x_j))_{i,j=1}^n \in \mathbb{C}^{n \times n}$$

is positive semi-definite for every finite subset $\{x_1, \ldots, x_n\} \subset X$. The corresponding *reproducing kernel Hilbert space* on X is denoted by \mathcal{H}_k . Thus,

$$k(\cdot,x)\in\mathcal{H}_k$$
 for all $x\in X$

and

$$\langle f, k(\cdot, x) \rangle = f(x)$$
 for all $f \in \mathcal{H}_k, x \in X$.

Classical Result	Reproducing Kernels	Generalizations	Results	References	
00	0000	000000	000	0	DES
					SAARLANDES

Example

1 If

$$s_1 \colon \mathbb{D} imes \mathbb{D} o \mathbb{C}, \ (z, w) \mapsto rac{1}{1 - z \overline{w}},$$

then $\mathcal{H}_{s_1}=H^2(\mathbb{D}).$ Let $d\geq 1$ be a natural number.

2 If

$$s_d \colon \mathbb{B}_d imes \mathbb{B}_d o \mathbb{C}, \ (z,w) \mapsto rac{1}{1-\langle z,w
angle},$$

then $\mathcal{H}_{s_d} = H_d^2$, the Drury–Arveson space on the unit ball in $\mathbb{B}_d \subset \mathbb{C}^d$.

Classical Result	Reproducing Kernels	Generalizations	Results	References	
00	0000	000000	000	0	DES SAARLANDES

Example

3 Let m ≥ 2 be a natural number. If
k^(m): B_d × B_d → C, (z, w) ↦ 1/((1 - (z, w))^m),
then H_{k^(m)} = A_m(B_d), the weighted Bergman space on B_d.
4 If

$$k \colon \mathbb{B}_d imes \mathbb{B}_d o \mathbb{C}, \; (z,w) \mapsto \sum_{n=0}^\infty rac{1}{n+1} \langle z,w
angle^n,$$

then \mathcal{H}_k coincides with the Dirichlet space on \mathbb{B}_d .

Classical Result

Reproducing Kernels

Generalizations

Results Refe

References 0

Definition

Let \mathcal{E}, \mathcal{F} be Hilbert spaces and let k, ℓ be kernels on X. We write $\text{Mult}(\mathcal{H}_{\ell} \otimes \mathcal{F}, \mathcal{H}_{k} \otimes \mathcal{E})$ for the space of $B(\mathcal{F}, \mathcal{E})$ -valued functions on X that multiply $\mathcal{H}_{\ell} \otimes \mathcal{F}$ into $\mathcal{H}_{k} \otimes \mathcal{E}$. Furthermore, we often identify $\Phi \in \text{Mult}(\mathcal{H}_{\ell} \otimes \mathcal{F}, \mathcal{H}_{k} \otimes \mathcal{E})$ with its associated multiplication operator $M_{\Phi} : \mathcal{H}_{\ell} \otimes \mathcal{F} \to \mathcal{H}_{k} \otimes \mathcal{E}$.

Theorem (Beurling, 1949; Lax, 1959; Halmos, 1961)

Let \mathcal{E} be a Hilbert space and let $\mathcal{M} \subset H^2(\mathbb{D}) \otimes \mathcal{E}$ be a non-zero closed subspace. The following are equivalent.

- 1 \mathcal{M} is invariant for z.
- 2 There exist a Hilbert space $\mathcal{F} \subset \mathcal{E}$ and an isometric multiplier $\Phi \in Mult(H^2(\mathbb{D}) \otimes \mathcal{F}, H^2(\mathbb{D}) \otimes \mathcal{E})$ such that

 $\mathcal{M} = \Phi(H^2(\mathbb{D}) \otimes \mathcal{F}).$

Theorem (Ball-Bolotnikov, 2013)

Let $m \geq 2$ be a natural number. Let \mathcal{E} be a Hilbert space and let $\mathcal{M} \subset A_m(\mathbb{D}) \otimes \mathcal{E}$ be a non-zero closed subspace. The following are equivalent.

- **1** \mathcal{M} is invariant for z.
- 2 There exist an auxiliary Hilbert space *F* and a partially isometric multiplier Φ ∈ Mult(H²(D) ⊗ *F*, A_m(D) ⊗ *E*) such that

$$\mathcal{M} = \Phi \cdot (H^2(\mathbb{D}) \otimes \mathcal{F}).$$

Classical Result	Reproducing Kernels	Generalizations	Results	References	
00	0000	000000	000	0	UUU DES
					SAARLANDE

Theorem (Sarkar, 2015 & 2016)

Let \mathcal{E} be a Hilbert space, let $\mathcal{H}_k \subset \mathcal{O}(\mathbb{B}_d)$ be a reproducing kernel Hilbert space of analytic functions such that the coordinate functions (z_1, \ldots, z_d) form a row contraction on \mathcal{H}_k (i.e., $\sum_{n=1}^d M_{z_n} M_{z_n}^* \leq \operatorname{id}_{\mathcal{H}_k}$) and let $\mathcal{M} \subset \mathcal{H}_k \otimes \mathcal{E}$ be a non-zero closed subspace. The following are equivalent.

- **1** \mathcal{M} is invariant for z_1, \ldots, z_d .
- 2 There exist an auxiliary Hilbert space \mathcal{F} and a partially isometric multiplier $\Phi \in \text{Mult}(H^2_d \otimes \mathcal{F}, \mathcal{H}_k \otimes \mathcal{E})$ such that

$$\mathcal{M} = \Phi \cdot (H_d^2 \otimes \mathcal{F}).$$

Classical Result	Reproducing Kernels	Generalizations	Results	References	000	UNIVERSITÄT
00	0000	000000	000	0		DES
					24	SAARLANDES

Remark

Let \mathcal{E} be a Hilbert space, and let $k \colon \mathbb{B}_d \times \mathbb{B}_d \to \mathbb{C}$ be a kernel. The following are equivalent.

1 coordinate functions (z_1, \ldots, z_d) form a row contraction on \mathcal{H}_k .

2
$$k/s_d \succeq 0$$
.

In this case, for a closed subspace $\mathcal{M} \subset \mathcal{H}_k \otimes \mathcal{E}$, the following are equivalent.

1 \mathcal{M} is invariant under multiplication by z_1, \ldots, z_d .

2
$$\mathcal{M}$$
 is $Mult(\mathcal{H}_{s_d})$ -invariant (i.e., invariant for all $\varphi \in Mult(\mathcal{H}_{s_d})$).

Classical Result	Reproducing Kernels	Generalizations	Results	References	
00	0000	000000	000	0	DES
					SAARLANDE

Definition

A kernel $k: X \times X \to \mathbb{C}$ is said to be *normalized* if there exists a point $x_0 \in X$ with $k(x, x_0) = 1$ for all $x \in X$.

Definition/Theorem (Agler–McCarthy, 2000)

A normalized kernel *s* is a *complete Nevanlinna–Pick* kernel if and only if *s* is non-vanishing and $1 - 1/s \succeq 0$.

Example

- The Drury–Arveson space and the Dirichlet space are complete Nevanlinna–Pick spaces.
- The weighted Bergman spaces are *not* complete Nevanlinna–Pick spaces.

Theorem (McCullough–Trent, 2000)

Let X be a set, let s be a normalized complete Nevanlinna–Pick kernel on X. Let \mathcal{E} be a Hilbert space and let $\mathcal{M} \subset \mathcal{H}_s \otimes \mathcal{E}$ be a non-zero closed subspace. The following are equivalent.

- **1** \mathcal{M} is $Mult(\mathcal{H}_s)$ -invariant.
- 2 There exist an auxiliary Hilbert space F and a partially isometric multiplier Φ ∈ Mult(H_s ⊗ F, H_s ⊗ E) such that

$$\mathcal{M} = \Phi \cdot \left(\mathcal{H}_{s} \otimes \mathcal{F} \right)$$

Theorem (Clouâtre–Hartz–S., 2019)

Let X be a set, let k be a kernel on X and let s be a normalized complete Nevanlinna–Pick kernel on X such that $k/s \succeq 0$. Let \mathcal{E} be a Hilbert space and let $\mathcal{M} \subset \mathcal{H}_k \otimes \mathcal{E}$ be a non-zero closed subspace. The following are equivalent.

- **1** \mathcal{M} is $Mult(\mathcal{H}_s)$ -invariant.
- **2** There exist an auxiliary Hilbert space \mathcal{F} and a partially isometric multiplier $\Phi \in \text{Mult}(\mathcal{H}_s \otimes \mathcal{F}, \mathcal{H}_k \otimes \mathcal{E})$ such that

$$\mathcal{M} = \Phi \cdot (\mathcal{H}_{s} \otimes \mathcal{F}).$$

Idea of the proof.

(1) \implies (2): Show that $k^{\mathcal{M}}/s \succeq 0$, where $k^{\mathcal{M}}$ is the reproducing kernel of \mathcal{M} . (Here we use the fact that *s* is a normalized complete Nevanlinna–Pick space.) Then use Kolmogorov's factorization theorem to obtain Φ .

A Beurling-Lax-Halmos Theorem for Spaces with a Complete Nevanlinna-Pick Factor

Theorem (Clouâtre–Hartz–S., 2019)

Assume the setting of the main theorem. Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{H}_k \otimes \mathcal{E}$ be two non-zero closed subspaces and let \mathcal{F}, \mathcal{G} be Hilbert spaces. If $\Phi \in \text{Mult}(\mathcal{H}_s \otimes \mathcal{F}, \mathcal{H}_k \otimes \mathcal{E})$ and $\Psi \in \text{Mult}(\mathcal{H}_s \otimes \mathcal{G}, \mathcal{H}_\ell \otimes \mathcal{E})$ are partially isometric multipliers with

$$\mathcal{M} = \Phi \cdot (\mathcal{H}_s \otimes \mathcal{F}) \quad and \quad \mathcal{N} = \Psi \cdot (\mathcal{H}_s \otimes \mathcal{G}),$$

then there exists a contractive multiplier $\Gamma \in Mult(\mathcal{H}_s \otimes \mathcal{G}, \mathcal{H}_s \otimes \mathcal{F})$ with

$$\Psi = \Phi \Gamma.$$

Theorem (Clouâtre–Hartz–S., 2019)

Assume the setting of main theorem. Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{H}_k \otimes \mathcal{E}$ be two non-zero closed subspaces and let \mathcal{F} be a Hilbert space. If $\Phi \in \text{Mult}(\mathcal{H}_s \otimes \mathcal{F}, \mathcal{H}_k \otimes \mathcal{E})$ is a partially isometric multiplier with

$$\mathcal{M} = \Phi \cdot (\mathcal{H}_{s} \otimes \mathcal{F})$$

and if \mathcal{N} is $Mult(\mathcal{H}_s)$ -invariant, then there exist a Hilbert space \mathcal{G} and a partially isometric multiplier $\Gamma \in Mult(\mathcal{H}_s \otimes \mathcal{G}, \mathcal{H}_s \otimes \mathcal{F})$ such that $\Phi\Gamma \in Mult(\mathcal{H}_s \otimes \mathcal{G}, \mathcal{H}_k \otimes \mathcal{E})$ is a partially isometric multiplier and

$$\mathcal{N} = (\Phi \Gamma) \cdot (\mathcal{H}_s \otimes \mathcal{G}).$$

References I

- J. Agler and J. E. McCarthy, *Complete Nevanlinna-Pick kernels*, J. Funct. Anal. **175** (2000), no. 1, 111–124.
- J. A. Ball and V. Bolotnikov, *A Beurling type theorem in weighted Bergman spaces*, C. R. Math. Acad. Sci. Paris **351** (2013), no. 11-12, 433–436.
- A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. **81** (1949), 17.
- R. Clouâtre, M. Hartz, and D. Schillo, A Beurling-Lax-Halmos theorem for spaces with a complete Nevanlinna-Pick factor, Proc. Amer. Math. Soc., to appear.
- P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math.
 208 (1961), 102–112.

References II

- P. D. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163–178.
- S. McCullough and T. T. Trent, *Invariant subspaces and Nevanlinna-Pick kernels*, J. Funct. Anal. **178** (2000), no. 1, 226–249.
- J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces. I, J. Operator Theory **73** (2015), no. 2, 433–441.

An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces—II, Complex Anal. Oper. Theory 10 (2016), no. 4, 769–782.