

K-contractions

Dominik Schillo

Operator Theory 27, 2018-07-02

Joint work with Jörg Eschmeier (Saarland University)

Contractions

Let \mathcal{H} be a complex Hilbert space.

Lemma

Let $T \in B(\mathcal{H})$. The following assertions are equivalent:

- 1 T is a contraction (i.e., $||T|| \le 1$),
- $1/K(T, T^*) \ge 0$, where

$$K \colon \mathbb{D} \times \mathbb{D} \to \mathbb{C}, \ (z, w) \mapsto \frac{1}{1 - z\overline{w}} = \frac{1}{1 - \langle z, w \rangle}$$

is the reproducing kernel of the Hardy space on the unit disc $H^2(\mathbb{D})$.

Example

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

2 Every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U,U^*)=0.$$

We say that a contraction $T \in \mathcal{B}(\mathcal{H})$ belongs to the class C_{0} or is *pure* if

$$T_{\infty} = \tau_{\text{SOT}} - \lim_{N \to \infty} T^N T^{*N} = 0.$$

Example

The shift operator $M_z \in B(H^2(\mathbb{D}))$ belongs to $C_{\cdot 0}$.

Theorem

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_T \colon \mathcal{H} \to H^2(\mathbb{D}, \mathcal{D}_T), \ h \mapsto \sum_{k=0}^{\infty} (D_T T^{*k} h) z^k,$$

where $D_T=(1-TT^*)^{1/2}=(1/K(T,T^*))^{1/2}$ and $\mathcal{D}_T=\overline{D_T\mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle T_{\infty} h, h \rangle$$

for all $h \in \mathcal{H}$, and

$$\pi_T T^* = (M_z^{\mathcal{D}_T})^* \pi_T.$$

Corollary

A contraction $T \in B(\mathcal{H})$ is in $C_{\cdot 0}$ if and only if π_T is an isometry.

The $C_{.0}$ case

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ be an operator. The following statements are equivalent:

- \blacksquare T is a contraction which belongs to $C_{.0}$,
- 2 there exist a Hilbert space \mathcal{D} , and an isometry $\pi\colon\mathcal{H}\to\mathsf{H}^2(\mathbb{D},\mathcal{D})$ such that

$$\pi T^* = (M_z^{\mathcal{D}})^* \pi.$$

A Beurling type theorem

Remark

If $T \in \mathcal{B}(\mathcal{H})$ is a $C_{\cdot 0}$ contraction and $S \in \mathsf{Lat}(T)$, then $T|_{\mathcal{S}}$ is also $C_{\cdot 0}$ contraction.

Theorem

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H^2(\mathbb{D}, \mathcal{E})$, the following statements are equivalent:

- $oldsymbol{\mathbb{I}} \ \mathcal{S} \in \mathsf{Lat}(M_z^{\mathcal{E}}),$
- **2** there exist a Hilbert space \mathcal{D} , and a bounded analytic function $\theta \colon \mathbb{D} \to \mathcal{B}(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H^2(\mathbb{D}, \mathcal{D}) \to H^2(\mathbb{D}, \mathcal{E}), \ f \mapsto \theta f$$

is a partial isometry with $\operatorname{Im}(M_{\theta}) = \mathcal{S}$.

The general case

Theorem

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

- $1/K(T, T^*) \ge 0$,
- **2** there exist Hilbert spaces \mathcal{D} and \mathcal{K} , a unitary operator $U \in \mathcal{B}(\mathcal{K})$, and an isometry $\Pi \colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that $\Pi T^* = (M^{\mathcal{D}}_{\tau} \oplus U)^*\Pi$.

Question

For which reproducing kernels K does an analogue theorem hold? What happens if we look at commuting tuples $T = (T_1, \ldots, T_n) \in B(\mathcal{H})^n$?

Unitarily invariant spaces on \mathbb{B}_n

Let $(a_k)_{k\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

$$k(z) = \sum_{k=0}^{\infty} a_k z^k$$
 $(z \in \mathbb{D})$

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc \mathbb{D} . The map

$$K : \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{C}, \ (z, w) \mapsto \sum_{k=0}^{\infty} a_k \langle z, w \rangle^k$$

defines a semianalytic positive definite function and hence, there exists a reproducing kernel Hilbert space $H_K \subset \mathcal{O}(\mathbb{B}_n)$ with kernel K. The space H_K is a so called *unitarily invariant space on* \mathbb{B}_n .

Furthermore, we assume $\sup_{k\in\mathbb{N}} a_k/a_{k+1} < \infty$ such that the K-shift $M_z = (M_{z_1}, \ldots, M_{z_n}) \in B(H_K)^n$ is well-defined. Since k has no zeros in \mathbb{D} , the function

$$\frac{1}{k} \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto \frac{1}{k(z)}$$

is again holomorphic and hence admits a Taylor expansion

$$\frac{1}{k}(z) = \sum_{k=0}^{\infty} c_k z^k \qquad (z \in \mathbb{D})$$

with a suitable sequence $(c_k)_{k\in\mathbb{N}}$ in \mathbb{R} .

Example

- II If $a_k = 1$ for all $k \in \mathbb{N}$, then H_K is the Hardy space (n = 1) or the Drury-Arveson space $(n \ge 2)$.
- 2 If $\nu > 0$ and $a_k = a_k^{(\nu)} = (-1)^k {-\nu \choose k}$ for all $k \in \mathbb{N}$, then

$$K(z,w) = K^{(\nu)}(z,w) = \frac{1}{(1-\langle z,w\rangle)^{\nu}} \qquad (z,w\in\mathbb{B}_n),$$

i.e., $H_{K^{(\nu)}}$ is a weighted Bergman space.

3 The space H_K is a *complete Nevanlinna-Pick space* if and only if

$$c_k \leq 0$$

for all k > 1.

Let $T = (T_1, \ldots, T_n) \in B(\mathcal{H})^n$ be a commuting tuple. Define

$$\left(\frac{1}{K}\right)_{N}(T,T^{*}) = \sum_{k=0}^{N} c_{k} \sigma_{T}^{k}(1)$$

for all $N \in \mathbb{N}$, where

$$\sigma_T \colon \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \ X \mapsto \sum_{i=1}^n T_i X T_i^*.$$

Furthermore, we write

$$\frac{1}{K}(T, T^*) = \tau_{\text{SOT}} - \lim_{N \to \infty} \left(\frac{1}{K}\right)_{N} (T, T^*)$$

if the latter exists.

Let $T \in B(\mathcal{H})^n$ be a commuting tuple.

- I We call T a K-contraction if $1/K(T, T^*) \ge 0$.
- 2 We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Example

- I If n = 1, a $K^{(1)}$ -contraction is a contraction.
- 2 If $n \ge 2$, a $K^{(1)}$ -contraction is a row contraction.
- Is Let $m \in \mathbb{N}^*$. We call a commuting tuple $T \in B(\mathcal{H})^n$ an m-hypercontraction if T is a $K^{(\ell)}$ -contraction for all $\ell = 1, \ldots, m$.

Proposition (Chen, 2012)

If there exists a $p \in \mathbb{N}$ such that

$$c_k \ge 0$$
 for all $k \ge p$ or $c_k \le 0$ for all $k \ge p$

holds, then

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}.$$

Example

The condition above is satisfied in the case when H_K is a

- 1 weighted Bergman space,
- 2 complete Nevanlinna-Pick space.

From now on, we assume that the condition in the last proposition holds.

Let $T \in B(\mathcal{H})^n$ be a K-contraction. We define

$$\Sigma_N(T) = 1 - \sum_{k=0}^N a_k \sigma_T^k \left(\frac{1}{K}(T, T^*) \right)$$

for $N \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists. If $\Sigma(T) = 0$, we call T K-pure.

Remark

If $K=K^{(1)}$ and $T\in B(\mathcal{H})^n$ is a $K^{(1)}$ -contraction, then

$$\Sigma_N(T) = \sigma_T^{N+1}(1)$$

for all $N \in \mathbb{N}$, and hence,

$$\Sigma(T)=T_{\infty}\geq 0.$$

Proposition

Let $T \in B(\mathcal{H})^n$ be a K-contraction such that $\Sigma(T)$ exists. The map

$$\pi_{\mathcal{T}} \colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}_{\mathcal{T}}), \ h \mapsto \sum_{\alpha \in \mathbb{N}^n} \left(a_{|\alpha|} \frac{|\alpha|!}{\alpha!} D_{\mathcal{T}} T^{*\alpha} h \right) z^{\alpha},$$

where $D_T = (1/K(T, T^*))^{\frac{1}{2}}$ and $\mathcal{D}_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle \Sigma(T)h, h \rangle$$

for all $h \in \mathcal{H}$ and

$$\pi_T T_i^* = (M_{z_i}^{\mathcal{D}_T})^* \pi_T$$

for all $i = 1, \ldots, n$.

The pure case

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following statements are equivalent:

- T is K-pure,
- **2** there exist a Hilbert space $\mathcal D$ and an isometry $\Pi\colon \mathcal H\to H_K(\mathcal D)$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}})^* \Pi$$

for all $i = 1, \ldots, n$.

A Beurling type theorem

Theorem (Eschmeier, S.)

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H_K(\mathcal{E})$, the following statements are equivalent:

- $\ \ \, \textbf{1} \ \ \, \mathcal{S} \in \mathsf{Lat}\left(M_z^{\mathcal{E}}\right) \ \, \textit{and} \ \, M_z^{\mathcal{E}}|_{\mathcal{S}} \ \, \textit{is K-pure,}$
- **2** there exist a Hilbert space \mathcal{D} and a bounded analytic function $\theta \colon \mathbb{B}_n \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H_{K}(\mathcal{D}) \to H_{K}(\mathcal{E}), \ f \mapsto \theta \cdot f$$

is a partial isometry with $\mathsf{Im}(M_{ heta}) = \mathcal{S}$.

The general case

Definition

We call a K-contraction $T \in B(\mathcal{H})^n$ strong if $\Sigma(T) \geq 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Remark

- **1** Every K-pure K-contraction is a strong K-contraction. Hence, the K-shift $M_z \in B(H_K)^n$ is a strong K-contraction.

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following statements are equivalent:

- T is a strong K-contraction,
- there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in \mathcal{B}(\mathcal{K})^n$, and an isometry $\Pi \colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \quad (i = 1, \dots, n).$$

If we assume that H_K is regular, i.e., $\lim_{k\to\infty} a_k/a_{k+1}=1$, then the above are also equivalent to

• there is a unital completely contractive linear map ρ : span $\{1, M_{z_i}, M_{z_i}, M_{z_i}^*; i = 1, \dots, n\} \rightarrow B(\mathcal{H})$ with $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \quad (i = 1, \dots, n).$