K-contractions

Radial K-hypercontractions

K-contractions

Dominik Schillo

Recent Advances in Operator Theory and Operator Algebras, 2018-12-13

Joint work with Jörg Eschmeier (Saarland University)

Contractions

Let \mathcal{H} be a complex Hilbert space.

Lemma

Let $T \in B(\mathcal{H})$. The following assertions are equivalent:

1 T is a contraction (i.e.,
$$||T|| \leq 1$$
),

2
$$1/K(T, T^*) \ge 0$$
, where

$$\mathcal{K} \colon \mathbb{D} imes \mathbb{D} o \mathbb{C}, \; (z,w) \mapsto rac{1}{1-z\overline{w}} = rac{1}{1-\langle z,w
angle}$$

is the reproducing kernel of the Hardy space on the unit disc $H^2(\mathbb{D})$.

K-contractions

Radial K-hypercontractions

Example

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

2 Every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U,U^*)=0.$$

Lemma

1 If $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are contractions, then $T \oplus S$ is a contraction.

2 If $T \in B(\mathcal{H})$ is a contraction and $\mathcal{M} \subset \mathcal{H}$ is a subspace, then $T|_{\mathcal{M}}$ is a contraction.

Definition

We say that a contraction $T \in B(\mathcal{H})$ belongs to the class $C_{.0}$ or is *pure* if

$$T_{\infty} = \tau_{\text{SOT}} - \lim_{N \to \infty} T^N T^{*N} = 0.$$

Example

The shift operator $M_z \in B(H^2(\mathbb{D}))$ belongs to C_{0} .

Theorem

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_T \colon \mathcal{H} \to H^2(\mathbb{D}, \mathcal{D}_T), \ h \mapsto \sum_{n=0}^{\infty} (D_T T^{*n} h) z^n,$$

where $D_T = (1 - TT^*)^{1/2} = (1/K(T, T^*))^{1/2}$ and $D_T = \overline{D_T H}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle T_\infty h, h \rangle$$

for all $h \in \mathcal{H}$, and

$$\pi_T T^* = (M_z^{\mathcal{D}_T})^* \pi_T.$$

Corollary

A contraction $T \in B(\mathcal{H})$ is in C_{0} if and only if π_{T} is an isometry.

K-contractions

Radial K-hypercontractions

The $C_{.0}$ case

Corollary

Let $T \in B(\mathcal{H})$ be an operator. The following statements are equivalent:

1 T is a contraction which belongs to $C_{.0}$,

2 there exist a Hilbert space D, and an isometry π: H → H²(D, D) such that

$$\pi T^* = (M_z^{\mathcal{D}})^* \pi.$$

K-contractions

Radial K-hypercontractions

A Beurling-type theorem

Remark

If $T \in B(\mathcal{H})$ is a $C_{.0}$ -contraction and $S \in Lat(T)$, then $T|_S$ is also $C_{.0}$ -contraction.

Theorem

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H^2(\mathbb{D}, \mathcal{E})$, the following statements are equivalent:

1 $S \in Lat(M_z^{\mathcal{E}})$,

2 there exist a Hilbert space \mathcal{D} , and a bounded analytic function $\theta \colon \mathbb{D} \to B(\mathcal{D}, \mathcal{E})$ such that

 $M_{\theta} \colon H^{2}(\mathbb{D}, \mathcal{D}) \to H^{2}(\mathbb{D}, \mathcal{E}), \ f \mapsto \theta f$

is a partial isometry with $Im(M_{\theta}) = S$.

The general case

Theorem

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

1
$$1/K(T, T^*) \ge 0$$
,

2 there exist Hilbert spaces D and K, a unitary operator U ∈ B(K), and an isometry Π: H → H_K(D) ⊕ K such that ΠT* = (M^D_z ⊕ U)*Π.

Question

For which reproducing kernels K does an analogue theorem hold? What happens if we look at commuting tuples $T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$?

Unitarily invariant spaces on \mathbb{B}_d

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

$$k(z) = \sum_{n=0}^{\infty} a_n z^n \qquad (z \in \mathbb{D})$$

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc $\mathbb{D}.$ The map

$$K \colon \mathbb{B}_d \times \mathbb{B}_d \to \mathbb{C}, \ (z, w) \mapsto \sum_{n=0}^{\infty} a_n \langle z, w \rangle^n$$

defines a semianalytic positive definite function and hence, there exists a reproducing kernel Hilbert space $H_K \subset \mathcal{O}(\mathbb{B}_d)$ with kernel K. The space H_K is a so called *unitarily invariant space on* \mathbb{B}_d .

K-contractions

Radial K-hypercontractions

Furthermore, we suppose that $\sup_{n \in \mathbb{N}} a_n/a_{n+1} < \infty$ such that the *K*-shift $M_z = (M_{z_1}, \ldots, M_{z_d}) \in B(H_K)^d$ is well-defined. Since *k* has no zeros in \mathbb{D} , the function

$$\frac{1}{k} : \mathbb{D} \to \mathbb{C}, \ z \mapsto \frac{1}{k(z)}$$

is again holomorphic and hence admits a Taylor expansion

$$\frac{1}{k}(z) = \sum_{n=0}^{\infty} c_n z^n \qquad (z \in \mathbb{D})$$

with a suitable sequence $(c_n)_{n\in\mathbb{N}}$ in \mathbb{R} .

Example

- If a_n = 1 for all n ∈ N, then H_K is the Hardy space (d = 1) or the Drury-Arveson space (d ≥ 2).
 If v > 0 and a_n = a^(v)_n = (-1)ⁿ (^{-v}_n) for all n ∈ N, then K(z, w) = K^(v)(z, w) = 1/((1 (z, w))^v) (z, w ∈ B_d), i.e., H_{K^(v)} is a weighted Bergman space.
- **3** The space H_K is a *complete Nevanlinna-Pick space* if and only if

$$c_n \leq 0$$

for all $n \ge 1$.

Radial K-hypercontractions

Definition

Let
$$T = (T_1, \dots, T_d) \in B(\mathcal{H})^d$$
 be a commuting tuple. Define

$$\left(\frac{1}{K}\right)_{N}(T, T^{*}) = \sum_{n=0}^{N} c_{n} \sigma_{T}^{k}(1)$$

for all $N \in \mathbb{N}$, where

$$\sigma_{\mathcal{T}} \colon B(\mathcal{H}) \to B(\mathcal{H}), \ X \mapsto \sum_{i=1}^{d} T_i X T_i^*.$$

Furthermore, we write

$$\frac{1}{K}(T, T^*) = \tau_{\text{SOT}} - \lim_{N \to \infty} \left(\frac{1}{K}\right)_N (T, T^*)$$

if the latter exists.

Radial K-hypercontractions

Definition

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.

2 We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Example

If
$$d = 1$$
, a $K^{(1)}$ -contraction is a contraction.

2 If $d \ge 2$, a $K^{(1)}$ -contraction is a row contraction.

2 Let
$$m \in \mathbb{N}^*$$
. We call a commuting tuple $T \in B(\mathcal{H})^d$ an *m*-hypercontraction if T is a $K^{(\ell)}$ -contraction for all $\ell = 1, ..., m$.

K-contractions 00000●000000

Radial K-hypercontractions

Proposition (Chen, 2012)

If there exists a natural number $p \in \mathbb{N}$ such that

$$c_n \ge 0$$
 for all $n \ge p$ or $c_n \le 0$ for all $n \ge p$

holds, then

$$rac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}} \quad and \quad \sum_{n=0}^\infty |c_n|<\infty.$$

Example

The condition above is satisfied in the case when H_K is a

- 1 weighted Bergman space,
- 2 complete Nevanlinna-Pick space.

For the rest of this section, we suppose that the condition in the last proposition holds.

K-contractions

K-contractions

Radial K-hypercontractions

Definition

Let $T \in B(\mathcal{H})^d$ be a *K*-contraction. We define

$$\Sigma_N(T) = 1 - \sum_{n=0}^N a_n \sigma_T^n \left(\frac{1}{K}(T, T^*) \right)$$

for $N \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists. If $\Sigma(T) = 0$, we call T K-pure.

Remark

If
$$K = K^{(1)}$$
 and $T \in B(\mathcal{H})^d$ is a $K^{(1)}$ -contraction, then
 $\Sigma_N(T) = \sigma_T^{N+1}(1)$

for all $N \in \mathbb{N}$, and hence,

$$\Sigma(T) = T_{\infty} \ge 0.$$

Radial K-hypercontractions

Proposition

Let $T\in B(\mathcal{H})^d$ be a K-contraction such that $\Sigma(T)$ exists. The map

$$\pi_{\mathcal{T}}\colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}_{\mathcal{T}}), \ h \mapsto \sum_{\alpha \in \mathbb{N}^d} \left(\mathbf{a}_{|\alpha|} \frac{|\alpha|!}{\alpha!} \mathcal{D}_{\mathcal{T}} \mathcal{T}^{*\alpha} h \right) \mathbf{z}^{\alpha},$$

where $D_T = (1/K(T, T^*))^{\frac{1}{2}}$ and $D_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\left\|\pi_{T}h\right\|^{2} = \left\|h\right\|^{2} - \left\langle\Sigma(T)h,h\right\rangle$$

for all $h \in \mathcal{H}$ and

$$\pi_T T_i^* = (M_{z_i}^{\mathcal{D}_T})^* \pi_T$$

for all i = 1, ..., d.

Radial K-hypercontractions

The pure case

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

- 1 T is a K-contraction which is K-pure,
- 2 there exist a Hilbert space D and an isometry $\Pi: H \to H_K(D)$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}})^* \Pi$$

for all i = 1, ..., d.

Radial K-hypercontractions

A Beurling-type theorem

Theorem (Eschmeier, S.)

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H_{\mathcal{K}}(\mathcal{E})$, the following statements are equivalent:

1
$$S \in Lat(M_z^{\mathcal{E}})$$
 and $M_z^{\mathcal{E}}|_{S}$ is K-pure,

2 there exist a Hilbert space \mathcal{D} and a bounded analytic function $\theta \colon \mathbb{B}_d \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{ heta} \colon H_{\mathcal{K}}(\mathcal{D}) o H_{\mathcal{K}}(\mathcal{E}), \ f \mapsto \theta \cdot f$$

is a partial isometry with $Im(M_{\theta}) = S$.

K-contractions

Radial K-hypercontractions

The general case

Definition

We call a K-contraction $T \in B(\mathcal{H})^d$ strong if $\Sigma(T) \ge 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Remark

- If a K-contraction is K-pure, then it is also strong. Hence, the K-shift $M_z \in B(H_K)^d$ is a strong K-contraction.
- **2** Every spherical unitary is a strong *K*-contraction.

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

- T is a strong K-contraction,
- there exist Hilbert spaces D, K, a spherical unitary U ∈ B(K)^d, and an isometry Π: H → H_K(D) ⊕ K such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \quad (i = 1, \dots, d).$$

If we assume that H_K is regular, i.e., $\lim_{n\to\infty} a_n/a_{n+1} = 1$, then the above are also equivalent to

• there is a unital completely contractive linear map ρ : span { $id_{H_{K}}, M_{z_{i}}, M_{z_{i}}M_{z_{i}}^{*}$; i = 1, ..., d} $\rightarrow B(\mathcal{H})$ with $\rho(M_{z_{i}}) = T_{i}, \ \rho(M_{z_{i}}M_{z_{i}}^{*}) = T_{i}T_{i}^{*}$ (i = 1, ..., d).

K-contractions

Radial K-hypercontractions

Radial *K*-hypercontractions

Definition

We call a commuting tuple $T \in B(\mathcal{H})^d$ with $\sigma(T) \subset \overline{\mathbb{B}}_d$ a radial *K*-hypercontraction if, for all 0 < r < 1, $rT \in B(\mathcal{H})^d$ is a *K*-contraction.

Example

Spherical unitaries are radial K-hypercontractions.

Remark

We define

$$k_r \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto k(rz) \qquad (r \in [0,1]).$$

For $r, s \in [0, 1]$, the function k_s/k_r has a Taylor expansion on $\mathbb D$

$$\sum_{n=0}^{\infty}a_n(s,r)z^n.$$

Note that

$$a_n(1,0)=a_n \quad ext{and} \quad a_n(0,1)=c_n \qquad (n\in\mathbb{N}).$$

K-contractions

Radial K-hypercontractions

Remark (Guo-Hu-Xu, 2004)

If $H_{\mathcal{K}}$ is regular, then $\sigma(M_z) \subset \overline{\mathbb{B}}_d$.

From now on, we suppose that H_K is regular.

Proposition (Olofsson, 2015)

The K-shift $M_z \in B(H_K)^d$ is a radial K-hypercontraction if and only if

$$a_n(1,r)\geq 0$$

for all $n \in \mathbb{N}$ and 0 < r < 1.

Remark (Olofsson, 2015)

If H_K is a complete Nevanlinna-Pick space or a generalized Bergman space, then M_z is a radial K-hypercontraction.

Radial K-hypercontractions

Proposition (Olofsson, 2015)

Suppose that M_z is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^d$ be a radial K-hypercontraction. Then

$$\frac{1}{\kappa_{\rm rad}}(T, T^*) = \tau_{\rm SOT} - \lim_{r \to 1} \frac{1}{\kappa}(rT, rT^*)$$

exists and defines a positive operator.

Corollary

If M_z is a radial K-hypercontraction, then

$$\frac{1}{K}_{\mathrm{rad}}(M_z, M_z^*) = P_{\mathbb{C}}.$$

Theorem (Eschmeier, S.)

Suppose that $M_z \in B(H_K)^d$ is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following assertions are equivalent:

- 1 T is a radial K-hypercontraction,
- 2 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^d$, and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that $\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \qquad (i = 1, ..., d),$
- 3 there is a unital completely contractive linear map $\rho: S \to B(\mathcal{H})$ on the operator space $S = \text{span} \{ \text{id}_{H_K}, M_{z_i}, M_{z_i}M_{z_i}^*; i = 1, ..., d \}$ with $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \quad (i = 1, ..., d).$