K-contractions

Radial K-hypercontractions

K-contractions

Dominik Schillo

Oberseminar Funktionalanalysis, 2018-01-22

K-contractions

Radial K-hypercontractions

Contractions

Let \mathcal{H} be a Hilbert space.

Definition

Let $T \in B(\mathcal{H})$. We call T a contraction if $||T|| \leq 1$.

Lemma

Let $T \in B(\mathcal{H})$ and define

$$\sigma_T \colon B(\mathcal{H}) \to B(\mathcal{H}), \ X \mapsto TXT^*.$$

The following assertions are equivalent:

- **1** T is a contraction,
- 2 T* is a contraction,

3
$$1 - TT^* \ge 0$$
,

4 $1 - \sigma_T(1) \ge 0$.

K-contractions

Radial K-hypercontractions

Hardy space The function

$$\mathcal{K}\colon \mathbb{D} imes \mathbb{D} o \mathbb{C}, \; (z,w)\mapsto rac{1}{1-z\overline{w}}=rac{1}{1-\langle z,w
angle}$$

is the reproducing kernel of the Hardy space on the unit disc, i.e., we have $K(\cdot,w)\in H^2(\mathbb{D})$ and

$$\langle f, K(\cdot, w) \rangle = f(w)$$

for all $w \in \mathbb{D}$ and $f \in H^2(\mathbb{D})$, where

$$H^{2}(\mathbb{D}) = \left\{ f = \sum_{k=0}^{\infty} f_{k} z^{k} \in \mathcal{O}(\mathbb{D}) ; \|f\|^{2} = \sum_{k=0}^{\infty} |f_{k}|^{2} < \infty \right\}$$

and, for $f = \sum_{k=0}^{\infty} f_{k} z^{k}$, $g = \sum_{k=0}^{\infty} g_{k} z^{k} \in H^{2}(\mathbb{D})$,
 $\langle f, g \rangle = \sum_{k=0}^{\infty} f_{k} \overline{g_{k}}.$

K-contractions

Radial K-hypercontractions

Furthermore, we have

$$K(z,w) = \sum_{k=0}^{\infty} \langle z,w \rangle^k$$

and

$$rac{1}{K}(z,w) = 1 - \langle z,w
angle$$

for all $z, w \in \mathbb{D}$.

Proposition

An operator $T \in B(\mathcal{H})$ is a contraction if and only if $rac{1}{K}(T) = rac{1}{K}(T,T) = 1 - \sigma_T(1) \ge 0.$

K-contractions

Radial K-hypercontractions

Proposition

The map

$$arphi\colon \ell^2(\mathbb{N}) o H^2(\mathbb{D}), \; (a_k)_{k\in\mathbb{N}}\mapsto \sum_{k=0}^\infty a_k z^k$$

is an Hilbert space isomorphism.

Let $S \in B(\ell^2(\mathbb{N}))$ be the right shift on $\ell^2(\mathbb{N})$. The operator $M_z \in B(H^2(\mathbb{D}))$ defined by

$$M_z = \varphi S \varphi^*$$

satisfies

$$(M_z f)(z) = z f(z)$$

for $f \in H^2(\mathbb{D})$ and $z \in \mathbb{D}$, i.e., M_z is the multiplication operator on $H^2(\mathbb{D})$ with symbol z. We call M_z the shift operator on $H^2(\mathbb{D})$.

K-contractions

Radial K-hypercontractions

Lemma

The following statements hold:

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z)=P_{\mathbb{C}}\geq 0.$$

2 Every coisometry $V \in B(\mathcal{H})$ satisfies

$$\frac{1}{K}(V)=0.$$

In particular, every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U)=0.$$

K-contractions

Radial K-hypercontractions

Lemma

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$T_{\infty} = \tau_{\text{SOT}} - \lim_{N \to \infty} \sigma_T^N(1) = \tau_{\text{SOT}} - \lim_{N \to \infty} T^N T^{*N}$$

exists and defines a positive operator.

Definition

We say that a contraction $T \in B(\mathcal{H})$ belongs to the class $C_{.0}$ or is *pure* if

$$T_{\infty}=0.$$

Example

The shift operator $M_z\in B(H^2(\mathbb{D}))$ belongs to $C_{\cdot 0}.$

K-contractions

Radial K-hypercontractions

Theorem

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_T \colon \mathcal{H} \to H^2(\mathbb{D}) \otimes \mathcal{D}_T, \ h \mapsto \sum_{k=0}^{\infty} z^k \otimes D_T T^{*k} h,$$

where $D_T = (1 - TT^*)^{1/2} = (1/K(T))^{1/2}$ and $D_T = \overline{D_T H}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle T_{\infty} h, h \rangle = \|h\|^2 - \|T_{\infty}^{1/2} h\|^2$$

for all $h \in \mathcal{H}$, and

$$\pi_T T^* = (M_z \otimes 1_{\mathcal{D}_T})^* \pi_T.$$

K-contractions

Radial K-hypercontractions

The $C_{.0}$ case

Corollary

A contraction $T \in B(\mathcal{H})$ is in C₀ if and only if π_T is an isometry.

Corollary

Let $T \in B(\mathcal{H})$ be an operator. The following statements are equivalent:

- **1** T is a contraction which belongs to $C_{.0}$,
- 2 there exist a Hilbert space D, and an isometry π: H → H²(D) ⊗ D such that

$$\pi T^* = (M_z \otimes 1_{\mathcal{D}})^* \pi.$$

K-contractions

Radial K-hypercontractions

Beurling's theorem

Remark

If $T \in B(\mathcal{H})$ is a $C_{.0}$ contraction and $S \in Lat(T)$, then $T|_S$ is also $C_{.0}$ contraction.

Lemma

Let $T \in B(\mathcal{H})$ be a $C_{.0}$ contraction and $S \subset \mathcal{H}$. The following assertions are equivalent:

1 $\mathcal{S} \in Lat(T)$,

2 there exist a Hilbert space D, and a partial isometry ψ: H²(D) ⊗ D → H with

$$T\psi=\psi(M_z\otimes 1_{\mathcal{D}})$$

and $Im(\psi) = S$.

Theorem (Beurling)

Let $S \subset H^2(\mathbb{D})$. The following statements are equivalent: **1** $S \in Lat(M_z)$,

2 there exist a Hilbert space \mathcal{D} , and an analytic function $\theta \colon \mathbb{D} \to B(\mathcal{D}, \mathbb{C})$ such that

 $M_{\theta} \colon H^{2}(\mathbb{D}) \otimes \mathcal{D} \to H^{2}(\mathbb{D}), \ f \mapsto \theta f$

is a partial isometry with $Im(M_{\theta}) = S$.

K-contractions

Radial K-hypercontractions

The general case

Lemma

Let $T \in B(\mathcal{H})$ be a contraction. Then there exist a Hilbert space \mathcal{K}_T with $T^{1/2}_{\infty}\mathcal{H} \subset \mathcal{K}_T$ and an unitary operator $U_T \in B(\mathcal{K}_T)$ such that

$$T_{\infty}^{1/2} T^* = U_T^* T_{\infty}^{1/2}.$$

Furthermore, \mathcal{K}_T and U_T can be chosen such that

$$\mathcal{K}_{\mathcal{T}} = igvee \left\{ U^k_{\mathcal{T}} T^{1/2}_\infty h \ ; \ k \in \mathbb{N} \ \text{and} \ h \in \mathcal{H}
ight\}.$$

K-contractions

Radial K-hypercontractions

Remark

Let $\mathcal{T}\in B(\mathcal{H})$ be a contraction. The operator

$$\exists_{\mathcal{T}} \colon \mathcal{H} \to (H^2(\mathbb{D}) \otimes \mathcal{D}_{\mathcal{T}}) \oplus \mathcal{K}_{\mathcal{T}}, \ h \mapsto \pi_{\mathcal{T}} h \oplus \mathcal{T}_{\infty}^{1/2} h$$

is an isometry which satisfies

$$\Pi_T T^* = ((M_z \otimes 1_{\mathcal{D}_T}) \oplus U_T)^* \Pi_T.$$

Theorem

Let $T \in B(\mathcal{H})$ be an operator. The following statements are equivalent:

- 1 T is a contraction,
- 2 there exist Hilbert spaces D and K, an unitary operator U ∈ B(K), and an isometry Π: H → (H²(D) ⊗ D) ⊕ K such that

$$\Pi T^* = ((M_z \otimes 1_{\mathcal{D}}) \oplus U)^* \Pi.$$

K-contractions

If we use the notation $H_{\mathcal{K}} = H^2(\mathbb{D})$, we can reformulate the last theorem.

Theorem

Let $T \in B(\mathcal{H})$ be an operator. The following statements are equivalent.

1
$$1/K(T) \ge 0.$$

2 There exist Hilbert spaces D and K, an unitary operator U ∈ B(K), and an isometry Π: H → (H_K ⊗ D) ⊕ K such that ΠT* = ((M_z ⊗ 1_D) ⊕ U)*Π.

Question

For which reproducing kernels K does the theorem above hold? What happens if we look at commuting tuples $T = (T_1, \ldots, T_n) \in B(\mathcal{H})^n$?

K-contractions

Radial K-hypercontractions

Unitarily invariant spaces on \mathbb{B}_n

Let $(a_k)_{k\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

$$k(z) = \sum_{k=0}^{\infty} a_k z^k \qquad (z \in \mathbb{D})$$

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc \mathbb{D} . The map

$$K \colon \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{C}, \ (z, w) \mapsto \sum_{k=0}^{\infty} a_k \langle z, w \rangle^k$$

defines a semianalytic positive definite function and hence, there exists a repdroducing kernel Hilbert space $H_K \subset \mathcal{O}(\mathbb{B}_n)$ with kernel K. The space H_K is a so called *unitarily invariant space on* \mathbb{B}_n .

K-contractions

Radial K-hypercontractions

We have that

$$\mathcal{K}(z,w) = \sum_{lpha \in \mathbb{N}^n} a_{|lpha|} rac{|lpha|!}{lpha!} z^{lpha} \overline{w}^{lpha}$$

for all $z, w \in \mathbb{B}_n$. Furthermore, one can show that

$$H_{\mathcal{K}} = \left\{ f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} z^{\alpha} \in \mathcal{O}(\mathbb{B}_n) ; \ \|f\|^2 = \sum_{\alpha \in \mathbb{N}^n} \frac{1}{|\alpha|!} \frac{\alpha!}{|\alpha|!} |f_{\alpha}|^2 < \infty \right\}.$$

Since k has no zeros in \mathbb{D} , the function

$$\frac{1}{k} \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto \frac{1}{k(z)}$$

is again holomorphic and hence admits a Taylor expansion

$$\frac{1}{k}(z) = \sum_{k=0}^{\infty} c_k z^k \qquad (z \in \mathbb{D})$$

with a suitable sequence $(c_k)_{k\in\mathbb{N}}$ in \mathbb{R} .

K-contractions

Radial K-hypercontractions

Example

If a_k = 1 for all k ∈ N, then H_K is the Hardy space (n = 1) or the Drury-Arveson space (n ≥ 2).
 If ν > 0 and a_k = a^(ν)_k = (-1)^k (^{-ν}_k) for all k ∈ N, then K(z, w) = K^(ν)(z, w) = 1/(1 - (z, w))^ν (z, w ∈ B_n),

i.e., $H_{K^{(\nu)}}$ is a weighted Bergman space.

The space H_K is an irreducible complete Nevanlinna-Pick space if and only if

$$c_k \leq 0$$

for all $k \geq 1$.

K-contractions

Radial K-hypercontractions

Definition

Let $T = (T_1, \ldots, T_n) \in B(\mathcal{H})^n$ be a commuting tuple. Define

$$\sigma_T \colon B(\mathcal{H}) \to B(\mathcal{H}), \ X \mapsto \sum_{i=1}^n T_i X T_i^*$$

and

$$\left(\frac{1}{K}\right)_{N}(T) = \sum_{k=0}^{N} c_{k} \sigma_{T}^{k}(1)$$

for all $N \in \mathbb{N}$. Furthermore, we write

$$\frac{1}{K}(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \left(\frac{1}{K}\right)_N(T)$$

if the latter exists.

 Radial K-hypercontractions

Definition

Let $T \in B(\mathcal{H})^n$ be a commuting tuple.

1 We call T a K-contraction if $1/K(T) \ge 0$.

2 We call T a row contraction if T is $K^{(1)}$ -contraction, i.e.,

$$\frac{1}{\mathcal{K}^{(1)}}(\mathcal{T}) = 1 - \sigma_{\mathcal{T}}(1) \ge 0.$$

3 We call T a row unitary or spherical unitary if T is a row isometry (i.e. $\sigma_T(1) = 1$) and consists of normal operators.

Remark

If $\sum_{k=0}^{\infty} c_k$ is absolutely convergent (e.g. if $K = K^{(\nu)}$ for $\nu > 0$) and $T \in B(\mathcal{H})^n$ is a row contraction, then

$$\frac{1}{K}(T) = \tau_{\parallel \cdot \parallel} \cdot \sum_{k=0}^{\infty} c_k \sigma_T^k(1).$$

K-contractions

Radial K-hypercontractions

Example

1 If n = 1, a row contraction is a contraction.

2 Let m∈ N*. We call a commuting tuple T ∈ B(H)ⁿ an m-hypercontraction if and only if T is a row contraction as well as a K^(m)-contraction.

Definition

Let $i \in \{1, \ldots, n\}$. We define

$$(M_{z_i}f)(z) = z_if(z)$$
 $(f \in H_K, z \in \mathbb{B}_n).$

Then $M_{z_i}: H_K \to H_K$ is a well-defined bounded operator on H_K if and only if $\sup_{k \in \mathbb{N}} \frac{a_k}{a_{k+1}} < \infty$. From now on, we shall assume that this condition holds.

We call the commuting tuple $M_z = (M_{z_1}, \ldots, M_{z_n}) \in B(H_K)^n$ the *K-shift* on H_K .

K-contractions

Radial K-hypercontractions

Remark

The K-shift $M_z \in B(H_K)^n$ is a row contraction if and only if $a_k \leq a_{k+1}$ for all $k \in \mathbb{N}$.

Example

1 If
$$\nu \ge 1$$
, then $M_z \in B(H_{K^{(\nu)}})^n$ is a row contraction.
2 If $0 < \nu < 1$, then $M_z \in B(H_{K^{(\nu)}})^n$ is *not* a row contraction.

 $\begin{array}{c} \textit{K-contractions} \\ \texttt{0000000} \bullet \texttt{000000000000} \end{array}$

Radial K-hypercontractions

Definition

Let $T\in B(\mathcal{H})^n$ be a K-contraction. We define

$$\Sigma_N(T) = 1 - \sum_{k=0}^N a_k \sigma_T^k \left(\frac{1}{K}(T) \right)$$

for $\textit{N} \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists. If $\Sigma(T) = 0$, we call T pure.

Remark

If ${\mathcal K}={\mathcal K}^{(1)}$ and ${\mathcal T}\in B({\mathcal H})^n$ is a row contraction, then

$$\Sigma_N(T) = \sigma_T^{N+1}(1)$$

for all $N \in \mathbb{N}$, and hence,

$$\Sigma(T) = T_{\infty} \geq 0.$$

K-contractions

Radial K-hypercontractions

Proposition

Let $T \in B(\mathcal{H})^n$ be a K-contraction such that the sequence $(\Sigma_N(T))_{N \in \mathbb{N}}$ is norm-bounded. The map

$$\pi_{\mathcal{T}}\colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}} \otimes \mathcal{D}_{\mathcal{T}}, \ h \mapsto \sum_{\alpha \in \mathbb{N}^n} a_{|\alpha|} \frac{|\alpha|!}{\alpha!} (z^{\alpha} \otimes D_{\mathcal{T}} \mathcal{T}^{*\alpha} h),$$

where $D_T = (1/K(T))^{\frac{1}{2}}$ and $\mathcal{D}_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle \Sigma(T)h, h \rangle$$

for all $h \in \mathcal{H}$ and

$$\pi_T T_i^* = (M_{z_i} \otimes 1_{\mathcal{D}_T})^* \pi_T$$

for all i = 1, ..., n.

K-contractions

Radial K-hypercontractions

Remark

In the setting of the last proposition, if T is pure, then π_T is an isometry. Conversely, if π_T is a well-defined isometry, then the proof of the last proposition shows that T is pure.

In many cases (e.g. if $K = K^{(\nu)}$ for $\nu > 0$) we have that

$$\frac{1}{K}(M_z)=P_{\mathbb{C}}.$$

Proposition

Assume that $1/K(M_z) = P_{\mathbb{C}}$. The K-shift $M_z \in B(H_K)^n$ satisfies $\Sigma_N(M_z) \ge 0$

for all $N \in \mathbb{N}$ and is pure.

K-contractions

Radial K-hypercontractions

The pure case

Theorem (Eschmeier, S.)

Assume that $1/K(M_z) = P_{\mathbb{C}}$. Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following statements are equivalent:

- 1 T is pure,
- 2 there exist a Hilbert space \mathcal{D} and an isometry

 $\Pi\colon \mathcal{H} \to H_K \otimes \mathcal{D}$

such that

$$\exists T_i^* = (M_{z_i} \otimes 1_{\mathcal{D}})^* \Pi$$

for all i = 1, ..., n.

K-contractions

Radial K-hypercontractions

Beurling's theorem

Proposition (Eschmeier, S.)

Assume that $1/K(M_z) = P_{\mathbb{C}}$. Let $T \in B(\mathcal{H})^n$ be pure and $S \subset \mathcal{H}$. The following statements are equivalent:

1
$$\mathcal{S} \in \mathsf{Lat}(\mathcal{T})$$
 and $\mathcal{T}|_{\mathcal{S}}$ is pure,

2 there exist a Hilbert space \mathcal{D} , and a partial isometry $\pi: H_K \otimes \mathcal{D} \to \mathcal{H}$ with

$$T_i\pi=\pi(M_{z_i}\otimes 1_{\mathcal{D}})$$

for all $i = 1, \ldots, n$ and $lm(\pi) = S$.

 Radial K-hypercontractions

Theorem (Eschmeier, S.)

Assume that $1/K(M_z) = P_{\mathbb{C}}$. Let \mathcal{E} be a Hilbert space, $H(\mathcal{E}) \subset \mathcal{O}(\mathbb{B}_n, \mathcal{E})$ a reproducing kernel Hilbert space, and let $M_z \in B(H(\mathcal{E}))^n$ be pure. For $\mathcal{S} \subset H(\mathcal{E})$, the following statements are equivalent:

1
$$S \in Lat(M_z)$$
 and $M_z|_S$ is pure,

2 there exist a Hilbert space \mathcal{D} and an analytic function $\theta \colon \mathbb{B}_n \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H_{\mathcal{K}}(\mathcal{D}) \to H(\mathcal{E}), \ f \mapsto \theta \cdot f$$

is a partial isometry with $Im(M_{\theta}) = S$.

Theorem (Sarkar, 2016)

Let \mathcal{E} be a Hilbert space and let $H(\mathcal{E}) \subset \mathcal{O}(\mathbb{B}_n, \mathcal{E})$ be a reproducing kernel Hilbert space of analytic functions such that $M_z \in B(H(\mathcal{E}))^n$ is a row contraction as well as $\mathcal{S} \subset H(\mathcal{E})$. Then the following statements are equivalent:

- 1 $\mathcal{S} \in Lat(M_z)$,
- 2 there exist a Hilbert space \mathcal{D} and an analytic function $\theta \colon \mathbb{B}_n \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H_{\mathcal{K}^{(1)}}(\mathcal{D}) \to H(\mathcal{E}), \ f \mapsto \theta \cdot f$$

is a partial isometry with $Im(M_{\theta}) = S$.

 Radial K-hypercontractions

The general case

Definition

We call a K-contraction $T \in B(\mathcal{H})^n$ strong if $\Sigma(T) \ge 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Remark

Every pure K-contraction is a strong K-contraction. Hence, the K-shift $M_z \in B(H_K)^n$ is a strong K-contraction if we assume that $1/K(M_z) \ge 0$.

K-contractions

Radial K-hypercontractions

Proposition

Let $V \in B(\mathcal{H})^n$ be a row isometry. The limit

$$\frac{1}{K}(V) = \tau_{\text{SOT}} - \lim_{N \to \infty} \sum_{k=0}^{N} c_k \sigma_V^k(1)$$

exists if and only if the series $\sum_{k=0}^{\infty} c_k$ converges.

- **2** The tuple V is a K-contraction if and only if $\sum_{k=0}^{\infty} c_k \ge 0$.
- 3 Assume that $\sum_{k=0}^{\infty} c_k = 1/\sum_{k=0}^{\infty} a_k \in [0,\infty)$. Then V is a strong K-contraction.

Remark

If $\sum_{k=0}^{\infty} c_k$ is abolutely convergent, then $\sum_{k=0}^{\infty} c_k = 1/\sum_{k=0}^{\infty} a_k$.

K-contractions

Radial K-hypercontractions

Lemma

Let $T \in B(\mathcal{H})^n$ be a strong K-contraction. Then there exist a Hilbert space \mathcal{K}_T with $\Sigma(T)^{\frac{1}{2}}\mathcal{H} \subset \mathcal{K}_T$, and a spherical unitary $U_T \in B(\mathcal{K}_T)^n$ such that

$$\Sigma(T)^{\frac{1}{2}}T_{i}^{*} = U_{T_{i}}^{*}\Sigma(T)^{\frac{1}{2}}$$

for all $i=1,\ldots,n.$ Furthermore, \mathcal{K}_{T} and U_{T} can be chosen such that

$$\mathcal{K}_{\mathcal{T}} = igvee \left\{ U^{lpha}_{\mathcal{T}} \Sigma(\mathcal{T})^{rac{1}{2}} h \ ; \ lpha \in \mathbb{N}^n \ ext{and} \ h \in \mathcal{H}
ight\}$$

holds.

K-contractions

Radial K-hypercontractions

Theorem (Eschmeier, S.)

Assume that $1/K(M_z) = P_{\mathbb{C}}$ and $\sum_{k=0}^{\infty} c_k = 1/\sum_{k=0}^{\infty} a_k \in [0, \infty)$. Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following statements are equivalent:

- **1** T is a strong K-contraction,
- 2 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^n$, and an isometry

 $\Pi\colon \mathcal{H} \to (\mathcal{H}_{\mathcal{K}} \otimes \mathcal{D}) \oplus \mathcal{K}$

such that

$$\Pi T_i^* = ((M_{z_i} \otimes 1_{\mathcal{D}}) \oplus U_i)^* \Pi$$

for all i = 1, ..., n.

K-contractions

Radial K-hypercontractions •00000000

Radial K-hypercontractions

Lemma

Let $m \in \mathbb{N}^*$ and let $T \in B(\mathcal{H})^n$ be a $K^{(m)}$ -contraction. Then, for 0 < r < 1, the tuple $rT \in B(\mathcal{H})^n$ is a pure $K^{(m)}$ -contraction.

Definition

We call a commuting tuple $T \in B(\mathcal{H})^n$ with $\sigma(T) \subset \overline{\mathbb{B}}_n$ a radial *K*-hypercontraction if, for all 0 < r < 1, $rT \in B(\mathcal{H})^n$ is a *K*-contraction.

K-contractions

Radial K-hypercontractions

Example

Every row isometry is a radial K-hypercontraction.

Remark

We define

$$k_r \colon \overline{\mathbb{D}} \to \mathbb{C}, \ z \mapsto k(rz) \qquad (r \in [0,1)).$$

For $r,s\in [0,1]$, the function k_s/k_r has a Taylor expansion on $\mathbb D$

$$\sum_{k=0}^{\infty}a_k(s,r)z^k.$$

Note that

$$a_k(1,0)=a_k$$
 and $a_k(0,1)=c_k$ $(k\in\mathbb{N}).$

K-contractions

Radial K-hypercontractions

Remark (Guo, Hu, Xu)

If $\lim_{k\to\infty} a_k/a_{k+1} = 1$, then $\sigma(M_z) \subset \overline{\mathbb{B}}_n$. From now on, we shall assume that this condition holds.

Proposition

The K-shift $M_z \in B(H_K)^n$ is a radial K-hypercontraction if and only if

$$a_k(1,r) \geq 0$$

for all $k \in \mathbb{N}$ and 0 < r < 1.

Remark (Olofsson)

All irreducible complete Nevanlinna-Pick spaces and all weighted Bergman spaces fulfill the property above.

K-contractions

Radial K-hypercontractions

Proposition

Assume that M_z is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^n$ be a radial K-hypercontraction. Then

$$\frac{1}{K_{\rm rad}}(T) = \tau_{\rm SOT} - \lim_{r \to 1} \frac{1}{K}(rT)$$

exists and defines a positive operator.

Corollary

If M_z is a radial K-hypercontraction, then

$$\frac{1}{K_{\mathrm{rad}}}(M_z)=P_{\mathbb{C}}.$$

K-contractions

Radial K-hypercontractions

Theorem (Olofsson; Eschmeier-S.)

Assume that M_z is a row contraction and a radial K-hypercontraction (and another technical assumption). Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following are equivalent:

- **I** T is a row contraction as well as radial K-hypercontraction,
- **2** T is a strong K-contraction,
- 3 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^n$, and an isometry $\Pi \colon \mathcal{H} \to (H_K \otimes \mathcal{D}) \oplus \mathcal{K}$ such that

$$\Pi T_i^* = ((M_{z_i} \otimes 1_{\mathcal{D}}) \oplus U_i)^* \Pi \qquad (i = 1, \dots, n).$$

In this case, we have

$$\Sigma(T) = T_{\infty}$$
 and $\tau_{\text{SOT}} - \sum_{k=0}^{\infty} a_k \sigma_T^k \left(\frac{1}{K}(T) \right) + T_{\infty} = 1.$

K-contractions

Radial K-hypercontractions

ν -hypercontractions

Remark (Agler; Müller, Vasilescu)

Let $m \in \mathbb{N}^*$. A commuting tuple $T \in B(\mathcal{H})^n$ is a *m*-hypercontraction if and only if *T* is $K^{(k)}$ -contraction for $1 \leq k \leq m$.

Definition

Let $\nu \geq 1$ be a real number. We call a commuting tuple $T \in B(\mathcal{H})^n$ an u-hypercontraction if

$$rac{1}{\mathcal{K}^{(\mu)}}(\mathcal{T}) = au_{\parallel\cdot\parallel} ext{-} \sum_{k=0}^{\infty} c_k^{(\mu)} \sigma_\mathcal{T}^k(1) \geq 0$$

for all $1 \leq \mu \leq \nu$.

K-contractions

Theorem (Olofsson; Eschmeier, S.)

Let $\nu \geq 1$ and let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following assertions are equivalent:

- **I** T is a row contraction and a radial $K^{(\nu)}$ -hypercontraction.
- **2** T is an ν -hypercontraction.
- **3** T is row contraction and a $K^{(\nu)}$ -contraction.
- 4 T is a strong $K^{(\nu)}$ -contraction.
- 5 There exist Hilbert spaces D, K, a spherical unitary U ∈ B(K)ⁿ, and an isometry

$$\Pi\colon \mathcal{H}\to (H_{\mathcal{K}^{(\nu)}}\otimes \mathcal{D})\oplus \mathcal{K}$$

such that

$$\Pi T_i^* = ((M_{z_i} \otimes 1_{\mathcal{D}}) \oplus U_i)^* \Pi$$

for all i = 1, ..., n.

K-contractions

Radial K-hypercontractions

Beurling's theorem for ν -hypercontractions

Theorem (Eschmeier, Klauk, S.)

Let \mathcal{E} be a Hilbert space and $\mathcal{S} \subset H_{K^{(\nu)}}(\mathcal{E})$ be a subspace. For $M_z \in B(H_{K^{(\nu)}})^n$ and $1 \leq \mu \leq \nu$, the following statements are equivalent:

- 1 We have $S \in Lat(M_z)$ and $M_z|_S$ is a μ -hypercontraction,
- 2 there exist a Hilbert space D and an analytic function θ: B_n → B(D, ε) such that

 $M_{\theta} \colon H_{\mathcal{K}^{(\mu)}}(\mathcal{D}) \to H_{\mathcal{K}^{(\nu)}}(\mathcal{E}), \ f \mapsto \theta \cdot f$

is a partial isometry with $Im(M_{\theta}) = S$.

K-contractions

Radial K-hypercontractions

Current work

Theorem (Eschmeier, S.)

Assume that $\lim_{k\to\infty} a_k/a_{k+1} = 1$ and $M_z \in B(H_K)^n$ is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following assertions are equivalent:

- **1** T is a radial K-hypercontraction,
- 2 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^n$, and an isometry $\Pi \colon \mathcal{H} \to (H_K \otimes \mathcal{D}) \oplus \mathcal{K}$ such that

 $\Pi T_i^* = ((M_{z_i} \otimes 1_{\mathcal{D}}) \oplus U_i)^* \Pi \qquad (i = 1, \dots, n),$

3 there is a unital completely contractive linear map $\rho: S \to B(\mathcal{H})$ on the operator space $S = \text{span} \{1, M_{z_i}, M_{z_i}M_{z_i}^*; i = 1, ..., n\}$ with $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \quad (i = 1, ..., n).$ *K*-contractions

Radial K-hypercontractions

Theorem (Eschmeier, S.)

Let $\nu > 0$ and let $T \in B(\mathcal{H})^n$ be a commuting tuple. The following assertions are equivalent:

- **1** T is a radial $K^{(\nu)}$ -hypercontraction,
- **2** T is a strong $K^{(\nu)}$ -contraction,
- 3 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^n$, and an isometry $\Pi \colon \mathcal{H} \to (H_{K^{(\nu)}} \otimes \mathcal{D}) \oplus \mathcal{K}$ such that

 $\Pi T_i^* = ((M_{z_i} \otimes 1_{\mathcal{D}}) \oplus U_i)^* \Pi \qquad (i = 1, \dots, n),$

4 there is a unital completely contractive linear map $\rho: S \to B(\mathcal{H})$ on the operator space $S = \text{span} \{1, M_{z_i}, M_{z_i}M_{z_i}^*; i = 1, ..., n\}$ with $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \quad (i = 1, ..., n).$