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Contractions
Let H be a Hilbert space.

De�nition

Let T ∈ B(H). We call T a contraction if ‖T‖ ≤ 1.

Lemma

Let T ∈ B(H) and de�ne

σT : B(H)→ B(H), X 7→ TXT ∗.

The following assertions are equivalent:

1 T is a contraction,

2 T ∗ is a contraction,

3 1− TT ∗ ≥ 0,

4 1− σT (1) ≥ 0.
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Hardy space
The function

K : D× D→ C, (z ,w) 7→ 1

1− zw
=

1

1− 〈z ,w〉
is the reproducing kernel of the Hardy space on the unit disc, i.e.,

we have K (·,w) ∈ H2(D) and

〈f ,K (·,w)〉 = f (w)

for all w ∈ D and f ∈ H2(D), where

H2(D) =

{
f =

∞∑
k=0

fkz
k ∈ O(D) ; ‖f ‖2 =

∞∑
k=0

|fk |2 <∞

}
and, for f =

∑∞
k=0

fkz
k , g =

∑∞
k=0

gkz
k ∈ H2(D),

〈f , g〉 =
∞∑
k=0

fkgk .
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Furthermore, we have

K (z ,w) =
∞∑
k=0

〈z ,w〉k

and
1

K
(z ,w) = 1− 〈z ,w〉

for all z ,w ∈ D.

Proposition

An operator T ∈ B(H) is a contraction if and only if

1

K
(T ) =

1

K
(T ,T ) = 1− σT (1) ≥ 0.
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Proposition

The map

ϕ : `2(N)→ H2(D), (ak)k∈N 7→
∞∑
k=0

akz
k

is an Hilbert space isomorphism.

Let S ∈ B(`2(N)) be the right shift on `2(N). The operator
Mz ∈ B(H2(D)) de�ned by

Mz = ϕSϕ∗

satis�es

(Mz f )(z) = zf (z)

for f ∈ H2(D) and z ∈ D, i.e., Mz is the multiplication operator on

H2(D) with symbol z . We call Mz the shift operator on H2(D).
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Lemma

The following statements hold:

1 The shift operator Mz ∈ B(H2(D)) satis�es

1

K
(Mz) = PC ≥ 0.

2 Every coisometry V ∈ B(H) satis�es

1

K
(V ) = 0.

In particular, every unitary U ∈ B(H) ful�lls

1

K
(U) = 0.
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Lemma

Let T ∈ B(H) be a contraction. Then

T∞ = τSOT- lim
N→∞

σNT (1) = τSOT- lim
N→∞

TNT ∗N

exists and de�nes a positive operator.

De�nition

We say that a contraction T ∈ B(H) belongs to the class C·0 or is

pure if

T∞ = 0.

Example

The shift operator Mz ∈ B(H2(D)) belongs to C·0.

K -contractions 7



Classical situation K -contractions Radial K -hypercontractions

Theorem

Let T ∈ B(H) be a contraction. Then

πT : H → H2(D)⊗DT , h 7→
∞∑
k=0

zk ⊗ DTT
∗kh,

where DT = (1− TT ∗)1/2 = (1/K (T ))1/2 and DT = DTH, is a
well-de�ned bounded linear operator. Furthermore, we have

‖πTh‖2 = ‖h‖2 − 〈T∞h, h〉 = ‖h‖2 −
∥∥∥T 1/2
∞ h

∥∥∥2
for all h ∈ H, and

πTT
∗ = (Mz ⊗ 1DT

)∗πT .
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The C·0 case

Corollary

A contraction T ∈ B(H) is in C·0 if and only if πT is an isometry.

Corollary

Let T ∈ B(H) be an operator. The following statements are

equivalent:

1 T is a contraction which belongs to C·0,

2 there exist a Hilbert space D, and an isometry

π : H → H2(D)⊗D such that

πT ∗ = (Mz ⊗ 1D)∗π.
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Beurling's theorem

Remark

If T ∈ B(H) is a C·0 contraction and S ∈ Lat(T ), then T |S is also

C·0 contraction.

Lemma

Let T ∈ B(H) be a C·0 contraction and S ⊂ H. The following

assertions are equivalent:

1 S ∈ Lat(T ),

2 there exist a Hilbert space D, and a partial isometry

ψ : H2(D)⊗D → H with

Tψ = ψ(Mz ⊗ 1D)

and Im(ψ) = S.
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Theorem (Beurling)

Let S ⊂ H2(D). The following statements are equivalent:

1 S ∈ Lat(Mz),

2 there exist a Hilbert space D, and an analytic function

θ : D→ B(D,C) such that

Mθ : H2(D)⊗D → H2(D), f 7→ θf

is a partial isometry with Im(Mθ) = S.
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The general case

Lemma

Let T ∈ B(H) be a contraction. Then there exist a Hilbert space

KT with T
1/2
∞ H ⊂ KT and an unitary operator UT ∈ B(KT ) such

that

T 1/2
∞ T ∗ = U∗TT

1/2
∞ .

Furthermore, KT and UT can be chosen such that

KT =
∨{

Uk
TT

1/2
∞ h ; k ∈ N and h ∈ H

}
.
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Remark

Let T ∈ B(H) be a contraction. The operator

ΠT : H → (H2(D)⊗DT )⊕KT , h 7→ πTh ⊕ T 1/2
∞ h

is an isometry which satis�es

ΠTT
∗ = ((Mz ⊗ 1DT

)⊕ UT )∗ΠT .

Theorem

Let T ∈ B(H) be an operator. The following statements are

equivalent:

1 T is a contraction,

2 there exist Hilbert spaces D and K, an unitary operator

U ∈ B(K), and an isometry Π: H → (H2(D)⊗D)⊕K such

that

ΠT ∗ = ((Mz ⊗ 1D)⊕ U)∗Π.
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If we use the notation HK = H2(D), we can reformulate the last

theorem.

Theorem

Let T ∈ B(H) be an operator. The following statements are

equivalent.

1 1/K (T ) ≥ 0.

2 There exist Hilbert spaces D and K, an unitary operator

U ∈ B(K), and an isometry Π: H → (HK ⊗D)⊕K such that

ΠT ∗ = ((Mz ⊗ 1D)⊕ U)∗Π.

Question

For which reproducing kernels K does the theorem above hold?

What happens if we look at commuting tuples

T = (T1, . . . ,Tn) ∈ B(H)n?
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Unitarily invariant spaces on Bn

Let (ak)k∈N be a sequence of positive numbers with a0 = 1 and

such that

k(z) =
∞∑
k=0

akz
k (z ∈ D)

de�nes a holomorphic function with radius of convergence at least

1 and no zeros in the unit disc D. The map

K : Bn × Bn → C, (z ,w) 7→
∞∑
k=0

ak 〈z ,w〉k

de�nes a semianalytic positive de�nite function and hence, there

exists a repdroducing kernel Hilbert space HK ⊂ O(Bn) with kernel

K . The space HK is a so called unitarily invariant space on Bn.
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We have that

K (z ,w) =
∑
α∈Nn

a|α|
|α|!
α!

zαwα

for all z ,w ∈ Bn. Furthermore, one can show that

HK =

{
f =

∑
α∈Nn

fαz
α ∈ O(Bn) ; ‖f ‖2 =

∑
α∈Nn

1

a|α|

α!

|α|!
|fα|2 <∞

}
.

Since k has no zeros in D, the function
1

k
: D→ C, z 7→ 1

k(z)

is again holomorphic and hence admits a Taylor expansion

1

k
(z) =

∞∑
k=0

ckz
k (z ∈ D)

with a suitable sequence (ck)k∈N in R.
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Example

1 If ak = 1 for all k ∈ N, then HK is the Hardy space (n = 1) or

the Drury-Arveson space (n ≥ 2).

2 If ν > 0 and ak = a
(ν)
k = (−1)k

(−ν
k

)
for all k ∈ N, then

K (z ,w) = K (ν)(z ,w) =
1

(1− 〈z ,w〉)ν
(z ,w ∈ Bn),

i.e., HK (ν) is a weighted Bergman space.

3 The space HK is an irreducible complete Nevanlinna-Pick

space if and only if

ck ≤ 0

for all k ≥ 1.
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De�nition

Let T = (T1, . . . ,Tn) ∈ B(H)n be a commuting tuple. De�ne

σT : B(H)→ B(H), X 7→
n∑

i=1

TiXT
∗
i

and (
1

K

)
N

(T ) =
N∑

k=0

ckσ
k
T (1)

for all N ∈ N. Furthermore, we write

1

K
(T ) = τSOT- lim

N→∞

(
1

K

)
N

(T )

if the latter exists.
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De�nition

Let T ∈ B(H)n be a commuting tuple.

1 We call T a K -contraction if 1/K (T ) ≥ 0.

2 We call T a row contraction if T is K (1)-contraction, i.e.,

1

K (1)
(T ) = 1− σT (1) ≥ 0.

3 We call T a row unitary or spherical unitary if T is a row

isometry (i.e. σT (1) = 1) and consists of normal operators.

Remark

If
∑∞

k=0
ck is absolutely convergent (e.g. if K = K (ν) for ν > 0)

and T ∈ B(H)n is a row contraction, then

1

K
(T ) = τ‖·‖-

∞∑
k=0

ckσ
k
T (1).
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Example

1 If n = 1, a row contraction is a contraction.

2 Let m ∈ N∗. We call a commuting tuple T ∈ B(H)n an

m-hypercontraction if and only if T is a row contraction as

well as a K (m)-contraction.

De�nition

Let i ∈ {1, . . . , n}. We de�ne

(Mzi f )(z) = zi f (z) (f ∈ HK , z ∈ Bn).

Then Mzi : HK → HK is a well-de�ned bounded operator on HK if

and only if supk∈N
ak

ak+1
<∞. From now on, we shall assume that

this condition holds.

We call the commuting tuple Mz = (Mz1 , . . . ,Mzn) ∈ B(HK )n the

K -shift on HK .
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Remark

The K -shift Mz ∈ B(HK )n is a row contraction if and only if

ak ≤ ak+1 for all k ∈ N.

Example

1 If ν ≥ 1, then Mz ∈ B(HK (ν))n is a row contraction.

2 If 0 < ν < 1, then Mz ∈ B(HK (ν))n is not a row contraction.
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De�nition

Let T ∈ B(H)n be a K -contraction. We de�ne

ΣN(T ) = 1−
N∑

k=0

akσ
k
T

(
1

K
(T )

)
for N ∈ N and write

Σ(T ) = τSOT- lim
N→∞

ΣN(T )

if the latter exists. If Σ(T ) = 0, we call T pure.

Remark

If K = K (1) and T ∈ B(H)n is a row contraction, then

ΣN(T ) = σN+1

T (1)

for all N ∈ N, and hence,

Σ(T ) = T∞ ≥ 0.
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Proposition

Let T ∈ B(H)n be a K -contraction such that the sequence

(ΣN(T ))N∈N is norm-bounded. The map

πT : H → HK ⊗DT , h 7→
∑
α∈Nn

a|α|
|α|!
α!

(zα ⊗ DTT
∗αh),

where DT = (1/K (T ))
1
2 and DT = DTH, is a well-de�ned

bounded linear operator. Furthermore, we have

‖πTh‖2 = ‖h‖2 − 〈Σ(T )h, h〉
for all h ∈ H and

πTTi
∗ = (Mzi ⊗ 1DT

)∗πT

for all i = 1, . . . , n.
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Remark

In the setting of the last proposition, if T is pure, then πT is an

isometry. Conversely, if πT is a well-de�ned isometry, then the

proof of the last proposition shows that T is pure.

In many cases (e.g. if K = K (ν) for ν > 0) we have that

1

K
(Mz) = PC.

Proposition

Assume that 1/K (Mz) = PC. The K -shift Mz ∈ B(HK )n satis�es

ΣN(Mz) ≥ 0

for all N ∈ N and is pure.
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The pure case

Theorem (Eschmeier, S.)

Assume that 1/K (Mz) = PC. Let T ∈ B(H)n be a commuting

tuple. The following statements are equivalent:

1 T is pure,

2 there exist a Hilbert space D and an isometry

Π: H → HK ⊗D
such that

ΠTi
∗ = (Mzi ⊗ 1D)∗Π

for all i = 1, . . . , n.
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Beurling's theorem

Proposition (Eschmeier, S.)

Assume that 1/K (Mz) = PC. Let T ∈ B(H)n be pure and S ⊂ H.

The following statements are equivalent:

1 S ∈ Lat(T ) and T |S is pure,

2 there exist a Hilbert space D, and a partial isometry

π : HK ⊗D → H with

Tiπ = π(Mzi ⊗ 1D)

for all i = 1, . . . , n and Im(π) = S.
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Theorem (Eschmeier, S.)

Assume that 1/K (Mz) = PC. Let E be a Hilbert space,

H(E) ⊂ O(Bn, E) a reproducing kernel Hilbert space, and let

Mz ∈ B(H(E))n be pure. For S ⊂ H(E), the following statements

are equivalent:

1 S ∈ Lat (Mz) and Mz |S is pure,

2 there exist a Hilbert space D and an analytic function

θ : Bn → B(D, E) such that

Mθ : HK (D)→ H(E), f 7→ θ · f
is a partial isometry with Im(Mθ) = S.
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Theorem (Sarkar, 2016)

Let E be a Hilbert space and let H(E) ⊂ O(Bn, E) be a

reproducing kernel Hilbert space of analytic functions such that

Mz ∈ B(H(E))n is a row contraction as well as S ⊂ H(E). Then
the following statements are equivalent:

1 S ∈ Lat (Mz),

2 there exist a Hilbert space D and an analytic function

θ : Bn → B(D, E) such that

Mθ : HK (1)(D)→ H(E), f 7→ θ · f
is a partial isometry with Im(Mθ) = S.
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The general case

De�nition

We call a K -contraction T ∈ B(H)n strong if Σ(T ) ≥ 0 and

Σ(T ) = σT (Σ(T )) holds.

Remark

Every pure K -contraction is a strong K -contraction. Hence, the

K -shift Mz ∈ B(HK )n is a strong K -contraction if we assume that

1/K (Mz) ≥ 0.
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Proposition

Let V ∈ B(H)n be a row isometry.

1 The limit

1

K
(V ) = τSOT- lim

N→∞

N∑
k=0

ckσ
k
V (1)

exists if and only if the series
∑∞

k=0
ck converges.

2 The tuple V is a K -contraction if and only if
∑∞

k=0
ck ≥ 0.

3 Assume that
∑∞

k=0
ck = 1/

∑∞
k=0

ak ∈ [0,∞). Then V is a

strong K -contraction.

Remark

If
∑∞

k=0
ck is abolutely convergent, then

∑∞
k=0

ck = 1/
∑∞

k=0
ak .
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Lemma

Let T ∈ B(H)n be a strong K -contraction. Then there exist a

Hilbert space KT with Σ(T )
1
2H ⊂ KT , and a spherical unitary

UT ∈ B(KT )n such that

Σ(T )
1
2Ti
∗ = UT

∗
i Σ(T )

1
2

for all i = 1, . . . , n. Furthermore, KT and UT can be chosen such

that

KT =
∨{

Uα
TΣ(T )

1
2 h ; α ∈ Nn and h ∈ H

}
holds.
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Theorem (Eschmeier, S.)

Assume that 1/K (Mz) = PC and
∑∞

k=0
ck = 1/

∑∞
k=0

ak ∈ [0,∞).
Let T ∈ B(H)n be a commuting tuple. The following statements

are equivalent:

1 T is a strong K -contraction,

2 there exist Hilbert spaces D,K, a spherical unitary

U ∈ B(K)n, and an isometry

Π: H → (HK ⊗D)⊕K
such that

ΠT ∗i = ((Mzi ⊗ 1D)⊕ Ui )
∗Π

for all i = 1, . . . , n.
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Radial K -hypercontractions

Lemma

Let m ∈ N∗ and let T ∈ B(H)n be a K (m)-contraction. Then, for

0 < r < 1, the tuple rT ∈ B(H)n is a pure K (m)-contraction.

De�nition

We call a commuting tuple T ∈ B(H)n with σ(T ) ⊂ Bn a radial

K -hypercontraction if, for all 0 < r < 1, rT ∈ B(H)n is a

K -contraction.
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Example

Every row isometry is a radial K -hypercontraction.

Remark

We de�ne

kr : D→ C, z 7→ k(rz) (r ∈ [0, 1)).

For r , s ∈ [0, 1], the function ks/kr has a Taylor expansion on D
∞∑
k=0

ak(s, r)zk .

Note that

ak(1, 0) = ak and ak(0, 1) = ck (k ∈ N).
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Remark (Guo, Hu, Xu)

If limk→∞ ak/ak+1 = 1, then σ(Mz) ⊂ Bn. From now on, we shall

assume that this condition holds.

Proposition

The K -shift Mz ∈ B(HK )n is a radial K -hypercontraction if and

only if

ak(1, r) ≥ 0

for all k ∈ N and 0 < r < 1.

Remark (Olofsson)

All irreducible complete Nevanlinna-Pick spaces and all weighted

Bergman spaces ful�ll the property above.
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Proposition

Assume that Mz is a radial K -hypercontraction. Let T ∈ B(H)n be

a radial K -hypercontraction. Then

1

K rad

(T ) = τSOT- lim
r→1

1

K
(rT )

exists and de�nes a positive operator.

Corollary

If Mz is a radial K -hypercontraction, then

1

K rad

(Mz) = PC.
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Theorem (Olofsson; Eschmeier-S.)

Assume that Mz is a row contraction and a radial

K -hypercontraction (and another technical assumption). Let

T ∈ B(H)n be a commuting tuple. The following are equivalent:

1 T is a row contraction as well as radial K -hypercontraction,

2 T is a strong K -contraction,

3 there exist Hilbert spaces D,K, a spherical unitary U ∈ B(K)n,
and an isometry Π: H → (HK ⊗D)⊕K such that

ΠT ∗i = ((Mzi ⊗ 1D)⊕ Ui )
∗Π (i = 1, . . . , n).

In this case, we have

Σ(T ) = T∞ and τSOT-

∞∑
k=0

akσ
k
T

(
1

K
(T )

)
+ T∞ = 1.
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ν-hypercontractions

Remark (Agler; Müller, Vasilescu)

Let m ∈ N∗. A commuting tuple T ∈ B(H)n is a

m-hypercontraction if and only if T is K (k)-contraction for

1 ≤ k ≤ m.

De�nition

Let ν ≥ 1 be a real number. We call a commuting tuple

T ∈ B(H)n an ν-hypercontraction if

1

K (µ)
(T ) = τ‖·‖-

∞∑
k=0

c
(µ)
k σkT (1) ≥ 0

for all 1 ≤ µ ≤ ν.

K -contractions 38



Classical situation K -contractions Radial K -hypercontractions

Theorem (Olofsson; Eschmeier, S.)

Let ν ≥ 1 and let T ∈ B(H)n be a commuting tuple. The following

assertions are equivalent:

1 T is a row contraction and a radial K (ν)-hypercontraction.

2 T is an ν-hypercontraction.

3 T is row contraction and a K (ν)-contraction.

4 T is a strong K (ν)-contraction.

5 There exist Hilbert spaces D,K, a spherical unitary

U ∈ B(K)n, and an isometry

Π: H → (HK (ν) ⊗D)⊕K
such that

ΠT ∗i = ((Mzi ⊗ 1D)⊕ Ui )
∗Π

for all i = 1, . . . , n.
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Beurling's theorem for ν-hypercontractions

Theorem (Eschmeier, Klauk, S.)

Let E be a Hilbert space and S ⊂ HK (ν)(E) be a subspace. For

Mz ∈ B(HK (ν))n and 1 ≤ µ ≤ ν, the following statements are

equivalent:

1 We have S ∈ Lat (Mz) and Mz |S is a µ-hypercontraction,

2 there exist a Hilbert space D and an analytic function

θ : Bn → B(D, E) such that

Mθ : HK (µ)(D)→ HK (ν)(E), f 7→ θ · f
is a partial isometry with Im(Mθ) = S.
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Current work

Theorem (Eschmeier, S.)

Assume that limk→∞ ak/ak+1 = 1 and Mz ∈ B(HK )n is a radial

K -hypercontraction. Let T ∈ B(H)n be a commuting tuple. The

following assertions are equivalent:

1 T is a radial K -hypercontraction,

2 there exist Hilbert spaces D,K, a spherical unitary U ∈ B(K)n,
and an isometry Π: H → (HK ⊗D)⊕K such that

ΠT ∗i = ((Mzi ⊗ 1D)⊕ Ui )
∗Π (i = 1, . . . , n),

3 there is a unital completely contractive linear map

ρ : S → B(H) on the operator space

S = span
{
1,Mzi ,MziM

∗
zi

; i = 1, . . . , n
}
with

ρ(Mzi ) = Ti , ρ(MziM
∗
zi

) = TiT
∗
i (i = 1, . . . , n).
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Theorem (Eschmeier, S.)

Let ν > 0 and let T ∈ B(H)n be a commuting tuple. The following

assertions are equivalent:

1 T is a radial K (ν)-hypercontraction,

2 T is a strong K (ν)-contraction,

3 there exist Hilbert spaces D,K, a spherical unitary U ∈ B(K)n,
and an isometry Π: H → (HK (ν) ⊗D)⊕K such that

ΠT ∗i = ((Mzi ⊗ 1D)⊕ Ui )
∗Π (i = 1, . . . , n),

4 there is a unital completely contractive linear map

ρ : S → B(H) on the operator space

S = span
{
1,Mzi ,MziM

∗
zi

; i = 1, . . . , n
}
with

ρ(Mzi ) = Ti , ρ(MziM
∗
zi

) = TiT
∗
i (i = 1, . . . , n).

K -contractions 42


	Classical situation
	K-contractions
	Radial K-hypercontractions

