Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs

Christian Tietz, M.Sc.

Analysis III (WS 2012/13) Blatt 7

Es seien X eine Menge und $\mathcal{P}(X)$ ihre Potenzmenge. Eine Teilmenge $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt Algebra, falls folgende Eigenschaften gelten:

- (i) $X \in \mathcal{A}$.
- (ii) $A \in \mathcal{A} \Longrightarrow A^c \in \mathcal{A}$.
- (iii) $A, B \in \mathcal{A} \Longrightarrow A \cup B \in \mathcal{A}$.

Aufgabe 1 (4+6=10 Punkte)

Sei X eine Menge. Zeigen Sie die folgenden Aussagen:

- (a) $\mathcal{A} := \{A \subseteq X : A \text{ endlich oder } A^c \text{ endlich}\} \subseteq \mathcal{P}(X) \text{ ist eine Algebra.}$
- (b) A ist eine σ -Algebra, genau dann wenn X endlich ist.

Aufgabe 2 (10 Punkte)

Seien X eine Menge, $\mathbb{N}^* := \mathbb{N} \cup \{0\}$ und $A \subseteq \mathcal{P}(X)$ eine Algebra. Zeigen Sie, dass zu jeder Folge $(A_n)_{n \in \mathbb{N}^*}$ von Mengen aus A eine Folge $(B_n)_{n \in \mathbb{N}^*}$ paarweise disjunkter Mengen aus A existiert, wobei $B_n \subseteq A_n$ für alle $n \in \mathbb{N}^*$ gelten soll, so dass

$$\bigcup_{n=0}^{\infty} A_n = \bigcup_{n=0}^{\infty} B_n.$$

Aufgabe 3 (3+4+3=10 Punkte)

Sei X eine Menge und μ ein Maß auf X. Zeigen Sie:

- (a) Aus $C \subset X$ beliebig und $A \subset X$ μ -messbar folgt, dass A auch $(\mu \mid C)$ -messbar ist.
- (b) A ist genau dann μ -messbar, wenn $X A \mu$ -messbar ist.
- (c) Zeigen Sie die Implikation:

$$\mu(A) = 0 \Longrightarrow A \text{ ist } \mu\text{-messbar.}$$

Bitte wenden!!!

Aufgabe 4 (10 Punkte)

Sei X eine Menge und seien $A, B \subseteq X$ Teilmengen von X. Mit $A \triangle B := (A-B) \cup (B-A)$ wird die symmetrische Differenz von A und B bezeichnet. Zeigen Sie die folgenden Aussagen:

- (a) $\chi_{A \cap B} = \chi_A \cdot \chi_B$.
- (b) $\chi_{A \cup B} = \chi_A + \chi_B \chi_A \cdot \chi_B$.
- (c) $\chi_{A-B} = \chi_A (1 \chi_B)$.
- (d) $\chi_{A \triangle B} = |\chi_A \chi_B|$.

Aufgabe 5 (10 Punkte)

Sei X eine beliebige Menge. Zeigen Sie: Ist μ ein Maß auf X, so gilt für $A_1, A_2, \ldots \in \mathcal{P}(X)$

$$\sum_{n=1}^{\infty} \mu(A_n) < \infty \Longrightarrow \mu\bigg(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m\bigg) = 0.$$

Zusatzaufgabe (3+3=6 Punkte)

Sei X eine Menge und seien $A_n \subseteq X(n \in \mathbb{N})$ Teilmengen von X. Der Limes superior und der Limes inferior sind definiert als

$$\limsup_{n \to \infty} A_n := \{ x \in X : x \in A_n \text{ für unendlich viele } n \in \mathbb{N} \},$$
$$\liminf_{n \to \infty} A_n := \{ x \in X : \exists n_0(x) \in \mathbb{N} : x \in A_n \, \forall n \ge n_0(x) \}.$$

Zeigen Sie die folgenden Aussagen:

- (a) $\chi_{\limsup A_n} = \limsup_{n \to \infty} \chi_{A_n}$
- (b) $\chi_{\liminf A_n} = \liminf_{n \to \infty} \chi_{A_n}$

Abgabe: Donnerstag, 13.12.2012, bis 12:10 in die Briefkästen in Gebäude E2 5.