Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Jan Müller, M.Sc.

Analysis 1 (WiSe 2016/17) 6. Übungsblatt

Bemerkung: Die Gleichung $z^3 - 1 = 0$ hat in \mathbb{C} genau die drei Lösungen $z_1 = 1$, $z_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ und $z_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$, welche in der komplexen Ebene die Eckpunkte eines gleichseitigen Dreiecks bilden.

Aufgabe 1 (10P)

Es seien z_1, z_2, z_3 paarweise verschiedene komplexe Zahlen mit $|z_1| = |z_2| = |z_3|$. Zeigen Sie, dass dann die folgenden Aussagen äquivalent sind:

i) z_1, z_2, z_3 sind die Eckpunkte eines gleichseitigen Dreiecks, d.h.

$$|z_1 - z_2| = |z_2 - z_3| = |z_1 - z_3|.$$

- ii) $z_1 + z_2 + z_3 = 0$.
- iii) z_1, z_2, z_3 sind die Lösungen einer Gleichung $z^3 \zeta = 0$ für ein $\zeta \in \mathbb{C} \{0\}$.

Aufgabe 2 (10P)

Zeigen Sie: $f: H \to \mathbb{C}, z \mapsto \frac{z-i}{z+i}$ mit $H:=\{z \in \mathbb{C}: \text{Im } z > 0\}$ ist injektiv und $f(H)=\{w \in \mathbb{C}: |w|<1\}.$

Aufgabe 3 (6+4=10P)

a) Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge komplexer Zahlen mit Grenzwert $a\in\mathbb{C}$. Zeigen Sie, dass dann die durch

$$M_n := \frac{1}{n} \sum_{k=1}^n a_k$$

definierte Folge ebenfalls gegen a konvergiert. Kann man auch umgekehrt schließen? (Beweis oder Gegenbeispiel!)

b) Beweisen Sie: Ist $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge komplexer Zahlen und $(c_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ beschränkt, so ist auch $(b_n\cdot c_n)_{n\in\mathbb{N}}$ eine Nullfolge.

Bitte wenden!

Aufgabe 4 (5 × 2=10P) Prüfen Sie nachstehende Zahlenfolgen ($n \in \mathbb{N}$) auf Konvergenz und betimmen sie ggf. den Grenzwert bei $n \to \infty$ (Sie dürfen die Ergebnisse aus der Vorlesung verwenden):

a)
$$a_n := \frac{n^2+1}{n} - \frac{n^2}{n+1}$$
;

b)
$$b_n := \sqrt{n}(\sqrt{n+5} - \sqrt{n});$$

c)
$$c_n := \sum_{k=0}^n \binom{n}{k} 10^{-k};$$

d)
$$d_n := (-1)^{\frac{n(n^2-1)}{3}};$$

e)
$$e_n := \left(\frac{1}{n}\right)^{1-\frac{1}{n}}$$
.