Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Jan Müller, M.Sc.

Analysis 3 (WS 2017/18) 8. Übungsblatt

Aufgabe 1 (1+1+5+2+3=12P) Im Folgenden soll eine Menge $V \subset \mathbb{R}$ konstruiert werden, die *nicht* \mathcal{L}^1 -messbar ist. Man beachte, dass dazu das sog. *Auswahlaxiom* der Mengenlehre benötigt wird.

- a) Zeigen Sie, dass durch $x \sim y \iff x y \in \mathbb{Q}$ eine Äquivalenzrelation auf \mathbb{R} definiert wird
- b) Begründen Sie, dass jede Äquivalenzklasse in \mathbb{R}/\sim einen Repräsentanten im Intervall [0,1) besitzt. Nach dem Auswahlaxiom existiert daher eine Menge $V \subset [0,1)$, die genau einen Repräsentanten jeder Äquivalenzklasse enthält.
- c) Folgern Sie:

Ist
$$V \mathcal{L}^1$$
-messbar, so muss $\sum_{q \in \mathbb{Q}} \mathcal{L}^1(V+q) = \mathcal{L}^1(\mathbb{R}) = \infty$ gelten. (1)

d) Wir betrachten nun die Menge $M:=\bigcup_{q\in[0,1)\cap\mathbb{Q}}\left(V+q\right)\subset[0,2].$ Folgern Sie:

Ist
$$V \mathcal{L}^1$$
-messbar, so muss $\sum_{q \in [0,1) \cap \mathbb{Q}} \mathcal{L}^1(V+q) \le 2$ gelten. (2)

e) Erläutern Sie, weshalb (2) im Widerspruch zu (1) steht. Die Menge V kann daher nicht \mathcal{L}^1 -messbar, und somit insbesondere nicht in der Borelschen σ -Algebra von \mathbb{R} enthalten sein.

Aufgabe 2 (12P) Es sei $f : \mathbb{R} \to [0, \infty)$ eine stetige Funktion. Zeigen Sie, dass durch

$$\mu_f(A) := \inf \left\{ \sum_{j \in I} \int_{a_j}^{b_j} f(x) \, \mathrm{d}x \, : \, \Big([a_j, b_j] \Big)_{j \in I} \text{ ist eine abzählbare Überdeckung von } A \right\}$$

ein σ -endliches Radon-Maß auf \mathbb{R} gegeben ist.

Bitte wenden!

¹ "Sei $(X_i)_{i \in I}$ eine Familie nichtleerer Mengen (mit nichtleerer Indexmenge I). Dann gibt es eine Familie $(x_i)_{i \in I}$ mit $x_i \in X_i$ für alle $i \in I$." Die Notwendigkeit des Auswahlaxioms für die Existenz nicht messbarer Mengen wurde in den 1960er Jahren vom amerikanischen Mathematiker *Robert M. Solovay* (*1938) gezeigt.

Aufgabe 3 (5+6=11P) Für $A \subset \mathbb{R}$ definieren wir

$$\zeta(A) := \begin{cases} \#A, \text{ wenn } A \text{ endlich ist,} \\ \infty \text{ sonst.} \end{cases}$$

- a) Zeigen Sie, dass durch ζ ein reguläres Borel-Maß auf $\mathbb R$ gegeben ist.
- b) Bestimmen Sie alle Mengen $B \subset \mathbb{R}$, für die $\zeta \mid B$ ein Radon-Maß ist.

 $\mathbf{Aufgabe}\ \mathbf{4}\ (5\mathrm{P})$ Es seien $f,g:\mathbb{R}^n\to\mathbb{R}$ stetige Funktionen mit

$$\mathcal{L}^n \big\{ x \in \mathbb{R}^n : f(x) \neq g(x) \big\} = 0.$$

Zeigen Sie, dass dann bereits f(x) = g(x) für alle $x \in \mathbb{R}^n$ gilt.