Dr. Darya Apushkinskaya



## Differentialgeometrie I (Kurventheorie) (SS 2013) Blatt 1

## **Aufgabe 1.1.** (5+7=12 Punkte)

Zeigen Sie, dass die Menge  $\mathcal{A} = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 - y^2\}$  eine reguläre Fläche ist, und prüfen nach, dass durch (i) and (ii) Parametrisierungen von  $\mathcal{A}$  gegeben sind:

- (i)  $X(u, v) = (u + v, u v, 4uv), (u, v) \in \mathbb{R}^2.$
- (ii)  $X(u, v) = (u \cosh(v), u \sinh(v), u^2), \quad (u, v) \in \mathbb{R}^2, \quad u \neq 0.$

## **Aufgabe 1.2.** (5+5=10 Punkte)

Sei  $I \subset \mathbb{R}$  ein offenes Intervall,  $P \in \mathbb{R}^3$  und  $X : I \times \mathbb{R} \to \mathbb{R}^3$  eine Abbildung der Form:

- (a)  $X(u,v) = P + v\alpha(u)$ ,
- (b)  $X(u,v) = \alpha(u) + vP$

mit einer Kurve  $\alpha: I \to \mathbb{R}^3$ . Wann handelt es sich um eine parametrisierte Fläche?

## **Aufgabe 1.3. (5x2=10 Punkte)**

Prüfen Sie, ob sich die folgenden Teilmengen des  $\mathbb{R}^3$  als reguläre parametrisierte Flächen darstellen lassen. Falls dies nicht "global" möglich ist, stellen Sie möglichst große Teilmengen als reguläre parametrisierte Flächen dar; diese Teilparametrisierungen bezeichnet man auch als "Karten". Fertigen Sie jeweils eine Skizze an, und kennzeichen Sie darin ggf. die verschiedenen Karten.

- (a)  $A := \{(x, y, z) \in \mathbb{R}^3 : 2x^2 = z 3y^2\}.$
- (b)  $B := \{(x, y, z) \in \mathbb{R}^3 : x^2 y^2 = 2\}.$
- (c)  $C := \{(x, y, z) \in \mathbb{R}^3 : 2x^2 + 3y^2 = 4z^2\}.$
- (d)  $D := \{(x, y, z) \in \mathbb{R}^3 : z = x^2 y^2\}.$
- (e)  $E := \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in \text{Spur } \alpha\}.$

Abgabe: Mittwoch, 30.10.13, vor der Vorlesung in dem Briefkasten in Gebäude E2 5.