Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Jan Müller, M.Sc.

Differentialgeometrie (SS 2016) Blatt 10

Aufgabe 1 (10 Punkte)

Seien $X: \Omega \to \mathbb{R}^3$ ($\Omega \subset \mathbb{R}^2$ ein Gebiet) eine parametrisierte Fläche und $w \in \Omega$ fixiert. Zeigen Sie: Durch die Abbildung $III_w: T_wX \times T_wX \to \mathbb{R}$,

$$III_w(U,V) := S_w(U) \cdot S_w(V)$$

wird eine symmetrische Bilinearform erklärt (dritte Fundamenatlform von X) und es besteht die Beziehung

$$III_w - (\kappa_1(w) + \kappa_2(w))II_w + \kappa_1(w)\kappa_2(w)I_w \equiv 0.$$

Darin bezeichnen $\kappa_{1,2}(w)$ die Hauptkrümmungen von X bei w.

Aufgabe 2 (10 Punkte)

Zeigen Sie die Parameterinvarianz des Flächeninhalts: Sei $X:\Omega\to\mathbb{R}^3$ eine regulär parametrisierte Fläche, $\varphi:\widetilde{\Omega}\to\Omega$ ein Diffeomorphismus und $\widetilde{X}:=X\circ\varphi$. Dann ist

$$\int_{\Omega} |X_u \times X_v| \, du \, dv = \int_{\widetilde{\Omega}} |\widetilde{X}_{\widetilde{u}} \times \widetilde{X}_{\widetilde{v}}| \, d\widetilde{u} \, d\widetilde{v}.$$

Aufgabe 3 (10 Punkte)

Sei $X:\Omega\to\mathbb{R}^3$ ein zweimal stetig differenzierbar parametrisiertes Flächenstück. Man setzt für $(u,v)\in\Omega$

$$X^{\varepsilon}(u,v) := X(u,v) + \varepsilon \varphi(u,v) N(u,v),$$

wobei $\varepsilon \in \mathbb{R}$, $\varphi \in C_0^{\infty}(\Omega)$ und N(u,v) der Normalenvektor von X ist. Zeigen Sie: Für ein hinreichend kleines $\varepsilon_0 > 0$ ist X^{ε} für alle $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$ eine regulär parametrisierte Fläche. Man bezeichnet diese als eine *Normalvariation* von X.

Aufgabe 4 (5+5 Punkte)

Als *Minimalfläche* bezeichnet man eine parametrisierte Fläche $X:\Omega\to\mathbb{R}^3$ ($\Omega\subset\mathbb{R}^2$ ein Gebiet) mit verschwindender mittlerer Krümmung $H\equiv 0$. In dieser Aufgabe wollen wir zeigen, dass sich eine Minimalfläche auch dadurch charakterisieren lässt, dass für sie unter allen ihren Normalvariationen (vgl. Aufgabe 3) der Flächeninhalt extremal wird (Minimum *oder* Maximum!).

a) Es sei X^{ε} eine Normalvariation von X gemäß Aufgabe 3. Zeigen Sie, dass für die Koeffizienten $\mathcal{E}_{\varepsilon}$, $\mathcal{F}_{\varepsilon}$ und $\mathcal{G}_{\varepsilon}$ der ersten Fundamentalform von X^{ε} der folgende Zusammenhang besteht:

$$\mathcal{E}_{\varepsilon}\mathcal{G}_{\varepsilon} - (\mathcal{F}_{\varepsilon})^2 = (\mathcal{E}_0\mathcal{G}_0 - \mathcal{F}_0^2)(1 - 4\varepsilon\varphi H) + R,$$

wobei $R = R(u, v, \varepsilon)$ mit $\lim_{\varepsilon \to 0} R(u, v, \varepsilon)/\varepsilon = 0$ ist.

b) Folgern Sie, dass für den Flächeninhalt $\mathcal{A}(\varepsilon) := A(X_{\varepsilon})$ gilt:

$$\mathcal{A}'(0) = 0 \Leftrightarrow H \equiv 0,$$

d.h. $\varepsilon = 0$ ist ein stationärer Punkt des Flächenfunktionals und der Flächeninhalt hat für X ein lokales Extremum, genau dann, wenn die mittlere Krümmung verschwindet.

Abgabe: Bis Montag, den 04. Juli 12:00 Uhr in Briefkasten 005, Geb. E 2.5.