Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Dr. Jan Müller

Funktionentheorie (SS 2018) 12. Übungsblatt

Abgabe: Bis Montag, den 09. Juli 12:00 Uhr in Briefkasten 047 in Geb. E 2.5.

Aufgabe 1 (3+4+7=14P) Es sei $U \subset \mathbb{C}$ eine offene Menge, $f,g:U\to\mathbb{C}$ meromorphe Funktionen und $z_0\in U$ ein beliebiger Punkt. Zeigen Sie:

a) Ist z_0 ein Pol der Ordnung m von f, so gilt

$$\operatorname{Res}_{z_0} f = \frac{\widetilde{f}^{(m-1)}(z_0)}{(m-1)!},$$

wobei $\widetilde{f}:U\to\mathbb{C}$ die holomorphe Fortsetzung von $(z-z_0)^m\,f(z)$ in z_0 bezeichnet.

b) Ist f auf einer Umgebung von z_0 holomorph und hat g in z_0 eine einfache Nullstelle, so gilt

$$\operatorname{Res}_{z_0} \frac{f}{g} = \frac{f(z_0)}{g'(z_0)}.$$

c) Ist $f \not\equiv 0$ auf einer Umgebung von z_0 , so gilt

$$\operatorname{Res}_{z_0} \frac{f'}{f} = \begin{cases} m, & \text{wenn } z_0 \text{ eine Nullstelle der Ordnung } m \text{ ist,} \\ -k, & \text{wenn } z_0 \text{ ein Pol der Ordnung } k \text{ ist,} \\ 0, & \text{sonst.} \end{cases}$$

Aufgabe 2 (3+2+5=10P) Berechnen Sie die Residuen der folgenden Funktionen in *allen* Punkten $z \in \mathbb{C}$:

a)
$$f_1(z) = \frac{1}{(1-z^2)(z^2+4)}$$
 b) $f_2(z) = \frac{1}{ze^z}$ c) $f_3(z) = \frac{\pi}{z \tan \pi z}$

Aufgabe 3 (6P) Es sei $U \subset \mathbb{C}$ ein einfach zusammenhängendes Gebiet und $\Sigma \subset U$ eine abzählbare Menge, die in U keinen Häufungspunkt hat. Beweisen Sie: Eine holomorphe Funktion $f: U - \Sigma \to \mathbb{C}$ hat genau dann eine Stammfunktion, wenn $\mathrm{Res}_z f = 0$ für alle $z \in \Sigma$ gilt.

Aufgabe 4 (10+10*=20P)

- a) Bestimmen Sie die Anzahl der Nullstellen (mit Vielfachheiten gezählt) der folgenden Polynome in den angegebenen Bereichen:
 - i) $2z^4 5z + 2$ in $|z| \ge 1$.
 - ii) $z^5 + iz^3 4z + i$ in $1 \le |z| < 2$.
- b) Zeigen Sie, dass die Gleichung $e^{-z}+z=\lambda$ für jedes $\lambda>1$ genau eine Lösung in der rechten Halbebene $H=\{z\in\mathbb{C}: \operatorname{Re} z>0\}$ hat und dass diese reell ist.

^{*}Zusatzpunkte