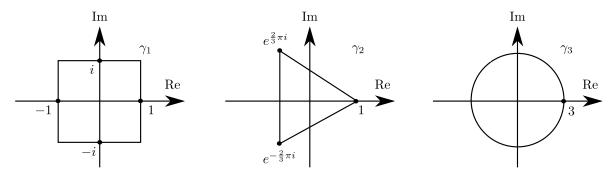
Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Dr. Jan Müller

Funktionentheorie (SS 2018) 4. Übungsblatt

Abgabe: Bis Montag, den 14. Mai 12:00 Uhr in Briefkasten 047 in Geb. E 2.5.

Aufgabe 1 (12P) Bestimmen Sie eine Parametrisierung der folgenden Wege (jeweils 1-mal im Gegenuhrzeigersinn durchlaufen)



und berechnen Sie $\int_{\gamma_j} \frac{1}{z} dz$ für j = 1 und j = 3.

Aufgabe 2 (8P) Für $n \in \mathbb{N}$ und R > 0 sei γ_n die Kurve $\gamma_n : \left[0, \frac{\pi}{2n}\right] \to \mathbb{C}, \quad \gamma_n(\theta) := Re^{i\theta}$. Beweisen Sie:

$$\left| \int_{\gamma_n} e^{-z^n} \, \mathrm{d}z \right| \le \frac{\pi}{2n} \frac{1 - e^{-R^n}}{R^{n-1}}$$

Hinweis: Zeigen Sie zunächst die Abschätzung $\cos(\theta) \ge 1 - \frac{2}{\pi}\theta$ für $0 \le \theta \le \frac{\pi}{2}$.

Aufgabe 3 (5+5=10P)

a) Es sei $G \subset \mathbb{C}$ eine offene Menge, $\gamma : [a,b] \to G$ ein Weg in G und $f : G \to \mathbb{C}$ eine Funktion. Ferner sei $\phi : [c,d] \to [a,b]$ ein Diffeomorphismus mit $\phi'(t) > 0$ für alle $t \in [c,d]$. Zeigen Sie

$$\int_{\gamma} f(z) dz = \int_{\gamma \circ \phi} f(z) dz;$$

d.h. der Wert des Kurvenintegrals ist unabhängig von der Wahl einer Parametrisierung.

b) Es sei $p(z) = a_m z^m + a_{m-1} z^{m-1} + ... + a_1 z + a_0$ ein Polynom vom Grad m mit Koeffizienten $a_0, ..., a_m \in \mathbb{C}$ und $z_0 \in \mathbb{C}$ ein beliebiger Punkt. Ferner sei $\gamma : [0, 2\pi] \to \mathbb{C}$ der Weg $\gamma(\theta) = z_0 + e^{i\theta}$. Zeigen Sie die Identität:

$$\frac{1}{2\pi i} \int\limits_{\gamma} \overline{p(z)} \, \mathrm{d}z = \overline{p'(z_0)}$$

Hinweis: Warum genügt es, den Fall $z_0 = 0$ zu betrachten?

Aufgabe 4 (7+3+3*=13P) Sei $G \subset \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C} - \{0\}$ holomorph. Eine holomorphe Funktion $L: G \to \mathbb{C}$ heißt holomorpher Logarithmus zu f, falls $\exp(L(z)) = f(z)$ für alle $z \in G$ gilt.

- a) Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - i) f besitzt einen holomorphen Logarithmus,
 - ii) $\frac{f'}{f}$ besitzt eine holomorphe Stammfunktion,
 - iii) $\int_{\gamma} \frac{f'}{f} dz = 0$ für jeden geschlossenen Integrationsweg γ in G.
- b) Zeigen Sie, dass zu zwei holomorphen Logarithmen L_1, L_2 von f eine ganze Zahl k derart existiert, dass $L_1 L_2 \equiv 2\pi i k$ gilt.
- c) Sei $A\subset\mathbb{C}$ kompakt mit $0\in A$ und sei $k\in\mathbb{Z}$. Zeigen Sie, dass die Funktion

$$f: \mathbb{C} - A \to \mathbb{C}, \quad z \mapsto z^k$$

genau dann einen holomorphen Logarithmus besitzt, wenn k=0 gilt.

^{*}Zusatzpunkte