Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Dr. Jan Müller

Funktionentheorie (SS 2018) 9. Übungsblatt

Abgabe: Bis Montag, den 18. Juni 12:00 Uhr in Briefkasten 047 in Geb. E 2.5.

Aufgabe 1 (10P) Zeigen Sie Satz 6.3 aus der Vorlesung: Sei $\Omega \subset \mathbb{R}^2$ ein Gebiet und $f: \Omega \to \mathbb{R}$ harmonisch. Dann Gilt:

 $f \equiv 0$ auf $\Omega \iff$ es gibt eine offene Menge $U \neq \emptyset$ in Ω mit $f \equiv 0$ auf U.

Hinweis: Zeigen Sie, dass die Menge $\Omega_0 := \{z \in \Omega : \exists \text{ offene Umg. } V \text{ von } z \text{ mit } f \equiv 0 \text{ auf } V\}$ sowohl offen als auch abgeschlossen in der Relativtopologie* von $\Omega \subset \mathbb{R}^2$ ist. Da Ω nach Vor. zusammenhängend ist, folgt daraus $\Omega_0 = \Omega$ oder $\Omega_0 = \emptyset$.

Aufgabe 2 (10P) Zeigen Sie Satz 6.5 aus der Vorlesung: Sei $\Omega \subset \mathbb{C}$ ein Gebiet und $f : \Omega \to \mathbb{R}$ harmonisch.

- i) Hat f im Inneren von Ω ein lokales Maximum oder Minimum, so ist f konstant.
- ii) Ist $\overline{\Omega}$ kompakt und f stetig auf $\overline{\Omega}$, so nimmt f sein Maximum und sein Minimum auf $\partial\Omega$ an.

Hinweis zu i): Sei $z_0 \in \Omega$ ein lokales Extremum von f. Folgern Sie aus der MWE harmonischer Funktionen, dass f konstant auf einer Kreisscheibe $D_R(z_0) \subset \Omega$ ist und wenden Sie Aufgabe 1 an.

Aufgabe 3 (10P) Zeigen Sie Satz 6.6 a) aus der Vorlesung: Sei $f : \overline{D_R(0)} \to \mathbb{R}$ stetig und harmonisch auf $D_R(0)$. Dann gilt für $z \in D_R(0)$

$$f(z) = \int_{0}^{2\pi} f(w_t) P_R(w_t, z) dt,$$

wobei

$$w_t := Re^{it}$$
 und $P_R(w, z) := \frac{1}{2\pi} \frac{R^2 - |z|^2}{|z - w|^2}.$

Hinweis: Betrachten Sie für eine Folge h_n positiver reeller Zahlen mit $h_n \uparrow 1$ für $n \to \infty$ die Funktionenfolge $f_n : \overline{D_R(0)} \to \mathbb{R}$, $f_n(z) := f(h_n z)$.

Aufgabe 4 (4+4+2=10P) Es seien $\gamma_{1,2,3}:[0,1]\to\mathbb{C}$ die Wege

$$\gamma_1(t) = -2t, \qquad \gamma_2(t) = 1 - e^{\pi i t}, \qquad \gamma_3(t) = 2e^{\pi i t}.$$

- a) Berechnen Sie $(-2[\![\gamma_1]\!] + 3[\![\gamma_2]\!] + [\![\gamma_3]\!])(f)$ für $f: \mathbb{C} \to \mathbb{C}, f(z) := (1-z)^2$.
- b) Welche der folgenden Ketten sind Zykel? Begründen Sie!

$$\mathrm{i)}\ 2\llbracket\gamma_1\rrbracket+\llbracket\gamma_2\rrbracket-3\llbracket\gamma_3\rrbracket \qquad \mathrm{ii)}\ \llbracket\gamma_1\rrbracket+\llbracket\gamma_2\rrbracket+\llbracket\gamma_3\rrbracket \qquad \mathrm{iii)}\ -2\llbracket\gamma_1\rrbracket-2\llbracket\gamma_2\rrbracket+2\llbracket\gamma_3\rrbracket$$

c) Für $k \in \mathbb{Z}$ sei $\alpha_k : [0,1] \to \mathbb{C}$ der Weg $\alpha_k(t) = e^{2k\pi it}$. Zeigen Sie: $[\![\alpha_k]\!] = k [\![\alpha_1]\!]$.

^{*}Es sei (X, \mathcal{T}) ein topologischer Raum und $Y \subset X$. Dann ist das Mengensystem $\mathcal{T}_Y := \{U \cap Y : U \in \mathcal{T}\}$ eine Topologie auf Y, die sog. Relativ- oder Teilraumtopologie.