

Dr. Dominic Breit

Höhere Mathematik für Ingenieure III, Blatt 6

Aufgabe 1. (5 Punkte) Es sei $\gamma: [a,b] \to \mathbb{R}^n$ eine stetig differenzierbare Kurve der Länge L und φ : $[\alpha, \beta] \to [a, b]$ eine monotone C^1 -Parametertransformation. Berechnen Sie die Länge der Kurve $\tilde{\gamma} = \gamma \circ \varphi : [\alpha, \beta] \to \mathbb{R}^n$. Spielt es dabei eine Rolle, ob φ orientierungstreu oder orientierungsumkehrend ist?

Aufgabe 2. (2.5+2.5 Punkte)

i) Es sei a > 0 und I = (-a, a). Berechnen Sie die Länge der ebenen Kurve (d.h. der Kurve im \mathbb{R}^2)

$$\alpha(t) = \begin{pmatrix} t \\ \cosh(t) \end{pmatrix}$$
, $t \in I$.

Skizzieren Sie die Kurve, wie heißt die Kurve (Literatur)?

ii)Betrachten Sie die Fläche, d.h. die Abbildung $F \colon \Omega = \{(u,v) \in \mathbb{R}^2 : \ 0 < u < 0 \}$ 2π , -a < v < a} $\rightarrow \mathbb{R}^3$,

$$F(u,v) = \begin{pmatrix} \cosh(v)\cos(u) \\ \cosh(v)\sin(u) \\ v \end{pmatrix} ,$$

die durch Rotation der Kurve α entsteht. Skizzieren Sie die Fläche, wie heißt die Fläche (Literatur)?

Aufgabe 3. (1+2+2 Punkte) Es sei $f: \mathbb{R}^m \to \mathbb{R}, m \geq 2$, definiert durch

$$f(\underline{\mathbf{x}}) = \begin{cases} \frac{x_1 x_2 \dots x_m}{(x_1^2 + x_2^2 + \dots + x_m^2)^m} & \text{für } \underline{\mathbf{x}} \neq \underline{\mathbf{0}} ,\\ 0 & \text{für } \underline{\mathbf{x}} = \underline{\mathbf{0}} . \end{cases}$$

- i) Zeigen Sie, dass f partiell differenzierbar auf $\mathbb{R}^m \{\mathbf{0}\}$ ist, und bestimmen Sie die partiellen Ableitungen.
- ii) Zeigen Sie, dass f partiell differenzierbar im Punkt $\mathbf{x} = \mathbf{0}$ ist, und bestimmen Sie die partiellen Ableitungen in **0**.
- *iii*) Zeigen Sie, dass f in $\underline{\mathbf{0}}$ nicht stetig ist. Hinweis: Betrachten Sie die Folge $\{\underline{\mathbf{a}}_k\}$,

$$\underline{\mathbf{a}}_k = \begin{pmatrix} 1/k \\ \vdots \\ 1/k \end{pmatrix} , \quad k \in \mathbb{N} .$$

Bitte wenden.

Aufgabe 4. (5 Punkte) Es sei $f: \mathbb{R}^4 \to \mathbb{R}$ definiert via

$$f(\underline{\mathbf{x}}) = e^{x_1 x_2} (x_3 \sin^2(x_1^2 x_2) + x_4 \cos^2(x_1^2 x_2)) .$$

Berechnen die partiellen Ableitungen von f und geben Sie den Gradienten an. Berechnen Sie weiterhin $D_{\underline{\mathbf{v}}}f,$ falls

$$\underline{\mathbf{v}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} .$$

Abgabe. Bis Do., 03.12.2009, Briefkasten am Eingang des Hörsaalgebäudes E2.5, **Leerung 8.30**.

Die Übungsblätter finden Sie auch im Netz unter http://www.math.uni-sb.de/ag/fuchs/HMI3/hmi3.html