Universität des Saarlandes

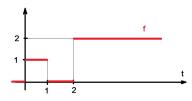
Fachrichtung Mathematik

PD Dr. Yana Kinderknecht

Übungen zur Vorlesung "Höhere Mathematik für Ingenieure IV A" SoSe 2019, Blatt 3 (20 Punkte)

Abgabe: 21.05.2019. Versehen Sie Ihre Lösungen mit Ihrem Namen.

Aufgabe 5. (10 Punkte)


Finden Sie die Faltung f*g und skizzieren Sie ihren Graphen für die folgenden Funktionen:

- a) $f(x) = e^{-|x|}$ und $g(x) = \theta(x)$, wobei θ die Heaviside-Funktion ist (2 Punkte);
- b) $f(x) = \theta(x)$ und $g(x) = (x-2)^2 \theta(x)$ (2 Punkte);
- c) f(x) = x und $g(x) = \Pi(x)$, wobei Π der Rechteckimpuls ist (2 Punkte);
- d) $f(x) = \begin{cases} 1, & x \in [0, 1], \\ 0, & x \notin [0, 1] \end{cases}$ und $g(x) = \begin{cases} 2 x, & x \in [0, 1], \\ 0, & x \notin [0, 1] \end{cases}$ (2 Punkte);
- e) $f(x) = \Pi(x)$ und $g(x) = \Lambda(x)$, wobei Λ der Dreieckimpuls ist (2 Punkte).

Aufgabe 6. (10 Punkte)

Bestimmen Sie (ohne Berechnung von Integralen!) die entsprechenden Bilder für die folgenden Originale:

- a) (2 Punkte) $f(t) = \sin^2 t + e^{5t} \cos 2t$;
- b) (2 Punkte) $f(t) = e^{-3it}(1 \cos t + \sin 3t \cdot \sin 5t);$
- c) (2 Punkte) $f(t) = \Pi(t-3/2)$, wobei $\Pi(t)$ der Rechteckimpuls ist;
- d) (2 Punkte) $f(t) = e^t \theta(t-1)$, wobei $\theta(t)$ die Heaviside-Funktion ist;
- e) (2 Punkte) f(t):

Die Übungsblätter sind auch auf unserer Homepage erhältlich:

https://www.math.uni-sb.de/ag/fuchs/HMI4_19/hmi4a-19.html