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Abstract. The length of the free boundary of twodimensional weak surfaces with
bounded mean curvature is studied in the case of non-perpendicular contact angles and
for non-minimizing stationary surfaces. Isolated singularities are excluded if the contact
angle is bounded away from zero and if the solution is assumed to lie on one side of the
supporting surface.

Given a vector field Q 2 C1�R3;R3�, jdivQj < H0 < 1 , we consider the functional

f�Y� � 1
2

� �
B1�0�

jrYj2 du dv� � �
B1�0�

Q�Y� � �Yu ^ Yv�du dv �: D�Y� � VQ�Y�

and study regularity at the free boundary of twodimensional stationary points X in a suitable
subclass c of the Sobolev space H1;2�B1�0�;R3�. Here c defines partially free boundary
values on a supporting surface S. A smooth solution X is a surface of mean curvature
H � divQ=2 satisfying a free boundary condition which is due to capillary forces:

jQ �Nj � cos a:

Here a denotes the angle in which X meets the supporting surface S at the free boundary
and N is the outward normal unit vector of S (see, for instance, [1], [8]). Considering the
perpendicular case, that is Q �NjS � 0, Grüter, Hildebrandt and Nitsche ([8]) proved
regularity of stationary points up to the free boundary by extending the interior results of
Grüter ([6]) ± see also [7] and [4] for the minimal surface case. In a recent paper ([2]),
Hölder continuity of minima up to the free boundary was proved in the non-perpendicular
case jQ �NjSj < q < 1 for a constant q. The last condition seems to be sharp since otherwise
we have to expect unbounded solutions of bounded mean curvature and of bounded area.

Here we exclude the existence of isolated singularities of stationary points in the non-
perpendicular case, where we assume that the solution does not penetrate the supporting
surface (compare [3]/I, Chapter 6.4, pp. 396). Of course we also have to assume the contact
angle to be bounded away from zero. The argumentation is based on length estimates of the
free trace which are obtained in terms of the contact angle.

To fix notation, we always consider a rectifiable arc G with end points P1 �j P2 on a
supporting surface S. Then the class c�G ; S� of admissible surfaces is given by
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De f i n i t i on 1 . For B � B1�0� � R2 the class c�G ; S� is the set of all functions
Y 2 H1;2�B;R3� with the following properties: there is an arc C � feiq : 0 % q1

% q % q2 < 2pg such that the well defined L2-traces of Y satisfy:

(i.) Free boundary values: Y�w� 2 S for h1-almost all w � �u; v� 2 @B � C ;

(ii.) Plateau boundary values: YjC : C! G is a continuous, weakly monotonic mapping
onto G with Y�eiq1� � Pi1 and Y�eiq2� � Pi2 for fi1; i2g � f1; 2g :

Notice that stationarity with respect to inner variations forces X to be parametrized
conformally (see [3]/I, pp. 242, [1], [2]), that is

jXuj2 � jXvj2 ; Xu �Xv almost everywhere in B:

Having established this, we now (see once more [1], [2]) may use the standard notation

B :� fw 2 R2 : jwj < 1; v > 0g; C :� fw 2 R2 : jwj � 1; v ^ 0g; I :� @B � C ;

as well as for a given w0 � �u0; 0� 2 I and for 0 < r < j1ÿ w0j
Sr�w0� :� fw 2 R2 : jwÿ w0j < r; v > 0g;
Cr�w0� :� fw 2 R2 : jwÿ w0j � r; v ^ 0g

and Ir�w0� :� @Sr�w0� � Cr�w0�. Finally X 2 c�G ; S� is a stationary point of f in this class
(with respect to outer variations) if

lim
e!0

1
e

�
f�Xe� ÿf�X�	 � 0

for any family of surfaces Xe 2 c�G ; S�, jej < e0 for some number e0 > 0, such that
Xe�w� � X�w� � eY�w; e�, where the Dirichlet integrals D�Y��; e�� are uniformly bounded and
where we have F 2 H1;2 \ L1 �B;R3� with Y�w; e� ! F�w� for almost all w 2 B as e! 0.

The supporting surface S is assumed to be a regular surface of class C2 which admits a
normal vectorfield N � �n1; n2; n3� of class C1. If threedimensional balls are denoted by
b��y� then we have:

Proposition 2. Given x0 2 S, there is a neighbourhood U � R3 of x0 , a real number � > 0
and a C2-diffeomorphism x � h�y� � hx0 �y�, b��0� ! U, satisfying:

(i.) hÿ1�x0� � 0 and hÿ1 S \U� � � B��0� � fy 2 R3 : jyj < �; y3 � 0g.
(ii.) hx0�y1; y2; y3� � Rÿ1

x0

ÿ
y1; y2; �1� y3��1� fx0�y1; y2���� ax0 .

Here f � fx0 2 C2�B��0�;R� satisfies f �0; 0� � 0 and Df �0; 0� � �0; 0�. The rotation
Rx0 2 SO3�R3;R3� is given by

Rx0 �

�n2�2
1� n3 � n3 ÿ n1n2

1� n3 ÿn1

ÿ n1n2

1� n3

�n1�2
1� n3 � n3 ÿn2

n1 n2 n3

0BBBBB@

1CCCCCA�x0� ;

i.e. Rx0 N�x0� � �0; 0; 1� � e3. Finally ax0 2 R3 is a translation.
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P roof. Note that jNj � 1 implies Rx0 to be well defined. Now, fix x0 2 S and choose Rx0

as above. With the obvious meaning of notation ~S :� Rx0 Sÿ x0� � � �0; 0; 1� is a regular
surface satisfying ~x :� �0; 0; 1� 2 S and ~N�~x� � e3. Since ~S is locally a graph over its tangent
plane at ~x we find a parametrization ~h�y1; y2; 0� of ~S with the desired properties of f . Here ~h
is given by ~h�y1; y2; y3� � ÿy1; y2; �1� y3��1� f �y1; y2���. On account of D ~h�0� � Id we may
assume that ~h is a C2-diffeomorphism and turning back to the original surface S the
proposition is proved. h

To proceed further we need the following general hypotheses.

Assumption 3. There is a real number K and a function ~N�x� 2 C1�R3;R3� satisfying
~N�x� � N�x� for all x 2 S and D ~N�x��� �� % K for all x 2 R3.

Ex a mpl e 4 . If S is an oriented strict C2-surface in the sense of [8], Assumption (V),
p. 122, and if the Gauss curvature of S is bounded, then S satisfies Assumption 3. The first
observation to prove this is: there is a real number d1 > 0 such that each ball bd1�x�, x 2 S, is
contained in the image of one diffeomorphism hx as defined in [8], Assumption (V). What is
more, the second derivatives of all hx are uniformly bounded since in addition to
Assumption (V) the Gauss curvature is assumed to be bounded. The next step is to prove the
existence of a real number d2 > 0 such that: for each x 2 R3 with dist �x; S� < d2 there is a
unique decomposition x � f �x� � tN�f �x��, where f �x� 2 S satisfies jxÿ f �x�j � dist�x; S�.
With this decomposition the above assumption is immediately verified.

Now our main result reads as follows:

Theorem 5. Consider a vectorfield Q 2 C1�R3;R3�, jdiv Q�z�j < H0 < 1 for some
constant H0 > 0 and for all z 2 R3, and a boundary configuration G ; Sh i with a supporting
surface S as given above. Suppose that there is a real number 0 < q < 1 with

jQ�z� �N�z�j < q for all z 2 S :

If X is a stationary point of f in the class c�G ; S� satisfying

(i.) X 2 C2� �B � fw0g;R3� for some w0 2 I,
(ii.) N

ÿ
X�w�� �Xv�w� ^ 0 for almost all w 2 I � fw0g,

then we have

lim
e!0

�
I�Ie�w0�

jXv�u; 0�j du <1 :

Theorem 5 immediately implies continuity up to the free boundary:

Corollary 6. With the above assumptions X 2 C0� �B;R3� holds true.

Re ma r k 7 . If we consider for example [8], Propositon 3', pp. 136, then it is on account of
the boundary integral in equation (4) not evident if the above result can be improved to
Hölder continuity.

P roof o f C or o l la r y 6 . Fix e > 0. By assumption, jXvj is a smooth function on I � fw0g
and Theorem 5 implies jXvj 2 L1�I�. (For a rigorous proof apply for example Fatou�s Lemma
to the sequence fk :� min fjXvjjI ; kg.) By conformality, the same is true for jXuj, that is there
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is a real number d1 > 0 such that

�
I3d1
�w0�
jXuj du <

e

9
:

Thus, w0 splits I3d1�w0� into two parts I�3d1
�w0� with oscI�3d1

�w0�X <
e

9
. By the Courant-

Lebesgue Lemma (see [7], Lemma 2, p. 393, for the situation considered here) we have
proved

oscI3d1
�w0��fw0gX <

e

3
:�1�

Again by the Courant-Lebesgue Lemma, there is a real number d2 > 0 satisfying: for each
w � �u; v� 2 Sd2�w0� there exits some ~v 2 �v; 3v=2� with

oscC~v��u;0��X <
e

3
:�2�

Finally according to [6], Theorem 3.10, p. 8, and once again according to the Courant-
Lebesgue Lemma there is a real number d3 > 0 such that (compare also [6], Lemma 2.7, p. 6):
for each w � �u; v� 2 Sd3�w0� there exits some r 2 �v=2; v� with

sup
w�2@Br��u;v��

jX�w�� ÿX�w�j < e

3
:�3�

So, if we choose d < min fd1; d2; d3g and fix ~w 2 Id�w0�, ~w �j w0, then (1)-(3) prove that
jX�w� ÿX� ~w�j < e for any w 2 Sd�w0� and Corollary 6 follows. h

P roof o f The or e m 5 . For almost all (notice that S is not assumed to be complete)
ŵ 2 I; ŵ �j w0, we have x̂ :� X�ŵ� 2 S. Fix one of these points ŵ and according to
Proposition 2 fix h � hx̂, choose U small enough and set (repeated Latin indices are always
to be summed from 1 to 3)

gij�y� :� hl
yi�y�hl

yj�y� satisfying ~Kÿ1jxj2 % gij�y�xixj % ~Kjxj2 ; i; j � 1 . . . 3;

for a real number ~K > 1, for all x 2 R3 and for all y 2 b��0�. By the choice of ŵ there is a
real number 0 < e0 < jw0 ÿ ŵj such that for all e % e0

X Se�ŵ�� ��U and X�w�2S \U for a. a. w 2 Ie�ŵ�; that is hÿ1�X�w��ÿ �3� 0 :

Now we can define for all w 2 Se0�ŵ�:
Y�w� :� hÿ1 �X�w� and kYk2 :� gij�Y�yiyj :

Conformality of X reads in terms of Y:

gij�Y�yi
uyj

u ÿ gij�Y�yi
vyj

v � gij�Y�yi
uyj

v � 0:

Consider for fixed e < e0 and d� e a smooth function l : B! R,

l�w� :� 1 : w 2 Seÿd�ŵ�
0 : w 2 B � Se�ŵ�

�
as well as a function t 2 C1�Se�ŵ�;R3� satisfying t3�w� � 0 for all w 2 Ie�ŵ�. Then h :� l t

defines an admissible variation (see [8], p. 132) and in the same manner as outlined in [8],
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pp. 133 ± 134, we see� �
Se�ŵ�

gij�Y�ryirhj du dv

� ÿ
� �

Se�ŵ�

1
2
@gik�Y�
@yj ryiryk � 2H�h�Y��

����������
g�Y�

p
�Yu ^ Yv�j

� �
hj du dv

� �
Ie�ŵ�

~Q3�Y��Yu ^ h�3 du:

�4�

Here we have g�y� :� det�gij�y�� and ~Q3�Y� :� Q�h�Y�� � @h�Y�=@y1 ^ @h�Y�=@y2
ÿ �

is not
necessarily vanishing for w 2 Ie. On the other hand,

gij�Y�Dyi � @gij�Y�
@yk ryiryk � 1

2
@gik�Y�
@yj ryiryk � 2H�h�Y��

����������
g�Y�

p
�Yu ^ Yv�j

is known (see [3]/II p. 64) since X is assumed to be of class C2. A partial integration proves� �
Se�ŵ�

gij�Y�ryirhj du dv

� ÿ
� �

Se�ŵ�
gij�Y�Dyi � @gij�Y�

@yk ryiryk
� �

hj du dvÿ
�

Ie�ŵ�
gij�Y�yi

vhj du

� ÿ
� �

Se�ŵ�

1
2
@gik�Y�
@yj ryiryk � 2H�h�Y��

����������
g�Y�

p
�Yu ^ Yv�j

� �
hj du dv

ÿ
�

Ie�ŵ�
gij�Y�yi

vhj du :

�5�

Thus (4) and (5) imply

ÿ �
Ie�ŵ�

gij�Y�yi
vhj du � �

Ie�ŵ�
~Q3�Y��Yu ^ h�3 du :�6�

Because of X 2 C2�Se�ŵ�;R3� we now may choose t�w� :� ÿg2m�Y�ym
u ; g1m�Y�ym

u ; 0
ÿ �

,
giving �Yu ^ t�3 � gij�Y�yi

uyj
u � kYuk2 � kYvk2 on Ie�ŵ�. Since no derivatives of l are

involved in (6), it is allowed to pass to the limit d! 0, that is l can be replaced by the
characteristic function of Se�ŵ�, then we may pass to the limit e! 0 and finally conclude

ÿ gij�Y�yi
vtjjŵ � ~Q3�Y�kYvk2

jŵ for almost all ŵ 2 I ; ŵ �j w0 :�7�
Since x̂ was chosen as the reference point of the diffeomorphism h � hx̂ we have

gij�Y�ŵ�� � dij ; t�ŵ� � �ÿy2
u�ŵ�; y1

u�ŵ�; 0�
kYv�ŵ�k2 � jYv�ŵ�j2 and ~Q3�Y�ŵ�� � Q�x̂� �N�x̂� :

Together with (7) this proves

ÿ Yv�ŵ� � ÿ y2
u�ŵ�; y1

u�ŵ�; 0
ÿ � � Q�x̂� �N�x̂� jYv�ŵ�j2 :�8�

Using (8) we now want to obtain an upper bound of jXvj in terms of q. To do this, we observe
that e1 :� Yu�ŵ�=jYu�ŵ�j, e2 :� t�ŵ�=jt�ŵ�j and e3 :� �0; 0; 1� define by construction an
orthonormal base of R3. Conformality yields

Y>v �ŵ� :� �Yv�ŵ� � e1� e1 � �Yv�ŵ� � e2� e2 � �Yv�ŵ� � e2� e2 :
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So jQ�x̂� �N�x̂�j2 < q2 < 1 and jY>v �ŵ�j2 � jYv�ŵ�j2 ÿ jy3
v�ŵ�j2 prove

jYv�ŵ�j2 < 1
1ÿ q2 jy3

v�ŵ�j2 :

To get an estimate for Xv�ŵ�, we recall f �0; 0� � 0 and Df �0; 0� � �0; 0� and obtain

Xv�ŵ� � Rÿ1
x̂

ÿ
y1

v�ŵ�; y2
v�ŵ�; y3

v�ŵ�
�
;

that is jYv�ŵ�j � jXv�ŵ�j. Furthermore, the setting B�x� :� Rx̂�xÿ ax̂� yields

Y � B1�X�;B2�X�; B3�X�
1� f �B1�X�;B2�X�� ÿ 1

� �
:

Using
ÿ
B1�X�ŵ��;B2�X�ŵ��� � ÿy1�ŵ�; y2�ŵ�� � �0; 0�, the assumption on f also proves

y3
v�ŵ� � N�x̂� �Xv�ŵ� :

Summarizing the results we arrive at

jXv�ŵ�j % 1
1ÿ q2

� �1
2

N�x̂� �Xv�ŵ�j j :�9�

Notice that (9) holds for all ŵ 2 I, ŵ �j w0, satisfying x̂ 2 S, that is for almost all ŵ 2 I. Now
we substitute the fixed N�x̂� by its extension ~N�x� and recall the assumption

~N
ÿ
X�ŵ�� �Xv�ŵ� ^ 0 ;

that is: for almost all w 2 I

jXv�w�j % 1
1ÿ q2

� �1
2

~N�X�w�� �Xv�w��10�

holds true. The fixed sign on the right hand side of (10) will give the result: on one hand for
any real number 0 < e < 1��� � �

B�Se�w0�

�� ~N�X� �Xu�u � � ~N�X� �Xv�v
	

du dv
���

%
� �

B�Se�w0�
jD ~N�X�j jrXj2 du dv� � �

B�Se�w0�
j ~N�X�j jDXj du dv

� � �
B�Se�w0�

jD ~N�X�j jrXj2 du dv� � �
B�Se�w0�

j ~N�X�j j2H�X��Xu ^Xv�j du dv

% c
� �

B�Se�w0�
jrXj2 du dv < c1;

�11�

where the constant c1 does not depend on e. On the other hand, since X 2 C2� �B � fw0g;R3�
and since the boundary of B � Se�w0� is piecewise smooth, a partial integration can be
applied to obtain� �

B�Se�w0�
� ~N�X� �Xu�u du dv� �

@ B�Se�w0�� �
~N�X� �Xu n1 dh1

� �
C

~N�X� �Xu n1 dh1 � �
Ce�w0�

~N�X� �Xu n1 dh1 ;
�12�
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where n denotes the outward unit normal of @ B � Se�w0�� �. In addition we have� �
B�Se�w0�

� ~N�X� �Xv�v du dv � �
C

~N�X� �Xv n2 dh1 � �
Ce�w0�

~N�X� �Xv n2 dh1

ÿ �
I�Ie�w0�

~N�X� �Xv du :
�13�

Finally observe that by Hölder�s inequality and by conformality (see (8) of [3]/II, p. 50)

�
Ce�w0�

jrXj dh1 % e
����
p
p �p

0
jrXj2�w0 � eeiq�dq

 !1
2

%
�������
2p
p �p

0
jXqj2 dq

 !1
2

;

�14�

i.e. in the same manner as proving the Courant-Lebesgue Lemma (see [7], Lemma 2, p. 393)
we find a sequence feng, en ! 0 as n! 1 , such that�

Cen �w0�
jrXj dh1 ! 0 as n!1 :

Summarizing the results, (11) ± (14) give

lim
e!0

�
I�Ie�w0�

~N�X� �Xv du

�����
����� � lim

e!0

�
I�Ie�w0�

~N�X� �Xv du <1

and (10) proves the theorem. h

Re ma r k 8 .

� The contact angle a 2 �0;p=2� is proved in (8) to satisfy cos �a� � jQ�x̂� �N�x̂�j.
� Due to Dziuk (see [5]) (compare also [3]/I, p. 411) length estimates in the (smooth)

perpendicular case are possible without assumption (ii.) of Theorem 5. In this case for
all w 2 I we have jXv�w�j � jDv��X�w��j, where � denotes the orientated distance with
respect to the supporting surface. Here, this relation is not true and the above
assumption can only be dropped in the case of plane supporting surfaces, where
jx3

v�w�j < fv�w� for almost all w 2 I can be proved by Dziuks arguments. To do this, we
have to set f�w� :� ÿd2v2 � �x3�w��2�1=2 for a fixed real number d > 0.
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