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Abstract. We introduce integrandg: R™N — R of (s, u, ¢)-type, which are, roughly
speaking, of lower (upper) growth rate> 1 (¢ > 1) satisfying in additionD?f(Z) >

—p/2
)\(1+ |Z\2) g for someu € R. Then, ifg < 2—p+s2, we prove partiaC" —regularity

of local minimizersu € Wf’loc((z, R™) by the way including integrandébeing controlled

by someN—function and also integrands of anisotropic power growth. Moreover, we extend
the known results up to a certain limit and present examples which are not covered by the
standard theory.
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1 Introduction

In this paper we study the problem of part@l—regularity for local minimizers
u € W} ,,.(2,RY) of strictly convex variational integrals

(1.1) () = /Q F(Du) dz

under rather general and also non-standard growth conditions. (Pl&gesome
domain in Euclidean spad®™, n > 2, and we assume that the integrafid

R™N — [0,00) is a function of clas€>? whose second derivativB? f(Z) has

to satisfy certain coercivity conditions to be specified below. Thus, we do not touch
the quasiconvex case (compare e. g. [EV], [FH], [EG1], [AF1], [AF2], [CFM]) and
before presenting our results, we briefly summarize the conditions under which
partial regularity is available in the framework of strong convexity. Roughly speak-
ing, we can consider three different cases:

A. Power growth
For some numbet: > 1 and with constant&, A > 0 the integrandf satisfies
(12 A(Z|m=1) < f(2) < A(jZ|"+1) forall ZeR™,
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in particular,f has the same growth rate from above and from below. Then, if also
D?f(Z) > 0 holds for any matrixZ, Anzellotti and Giaquinta proved in [AG] that

for any local minimizer: € W ,.(2,RY) of (1.1) there is an open s€, such
that|2 ~ 25| = 0, i. e. the singular set has measure zero,agdC(2y, RV).

We emphasize that the paper [AG] also includes the case of linear growth 1)

with corresponding local minimizers in the spaB&],.(f2, RY). Moreover, the
reader will find there further comments on earlier results obtained under condition
(1.2).

B. Growth conditions involvingV—functions

The modelf(Z) = |Z|In(1 + |Z|) serves as a typical example for integrarfds
not satisfying (1.2) for any powen. > 1. Generally speaking, the quantit|™
occuring in (1.2) is now replaced hy(|Z|) for some arbitraryN—function A:
[0,00) — [0, 00) satisfying ad,—condition. If we add an appropriate ellipticity
and growth condition o®? f(Z), then in [FO] partial regularity was shown to hold
up to a certain dimension. The particular class of integrangswith logarithmic
structure (i. e. fisC%—close t0| Z| In(1 + | Z])) was studied first in [FS] with the
result that minimizers are partialty* provided that» < 4. Later on Esposito and
Mingione [EM2] removed the restriction on) moreover, Mingione and Siepe [MS]
proved forf(Z) = |Z|In(1 + | Z|) in fact that the singular set is empty which of
course can not be expected in the general case. We would like to remark that some
extensions of the results obtained in [MS] can be found in [FM].

C. Anisotropic power growth

was introduced by Marcellini [M1]-[M4] as a natural extension of (1.2) where now
f is allowed to have different growth rates from above and from below, precisely:
with numbersl < p < ¢ we have

(1.3) A|z[P—1) < f(Z2) < A(|12|*+1) forall Z e R™Y

(plus corresponding conditions involvir? f(Z), for exampleD? f(Z) > A(1 +
|Z|?)(»=2)/2), Condition (1.3) is motivated by the integral & 2, p > 2)

() = /Q{(l—l—\81u|2)% (14 1ouP) ) de

where the derivatives occur with different powers. It should be noted that B. is not
a subcase of C. For formal reasons this should be obvious by considering energies
of logarithmic type. On the other hand, partial regularity in the anisotropic case
has been studied by Acerbi and Fusco [AF4] and later by Passarelli Di Napoli and
Siepe [PS] under quite restrictive assumptions: in [PS] they impose the condition

1.4 2<p<g< min{p—kl,pinl}
n—

thus excluding any subquadratic growth.
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The purpose of our paper is twofold: first, we would like to give a unified ap-
proach including all the different cases. Secondly, we present certain improvements
by extending for example the results of [FO] (see Remark 5.) below) and by con-
structing integrands to which the results mentioned in A. — C. do not apply but
which can be handled with the help of our techniques. We consider integfands
of (s, i, ¢)—growth which are defined as follows: |Et [0, c0) — [0, c0) denote a
continuous function such that for some> 1 we have

. F@)
(1.5) lim —= = oo, F(t) > cot® forlarge values of .

t—oo t
The integrandf is a non—negative’>—function such that for al, Y € R*V
(1.6) a F(|Z) < £(2);
(L7) A1+|ZP) VP < DF2)Y,Y) < AL+ |2Z)7) T YR

Herep € R, ¢ > 1 andcy, c1, A, A denote positive constants. In addition, we
require the(s, i, ¢)—condition, i. e.

2
(1.8) q<2—u—|—sﬁ.
Note that on account af > 1 (1.8) gives the upper bound
2
(1.9) pw<1l+=.
n

Inthe case that is C? close to| Z| In(1+|Z|) we cantake = 1,y = 1,g = 1 +¢
(foranye > 0) and F(t) = tIn(1 + t), hence (1.8) holds. Now our main result
reads as follows:

Theorem 1.1. Let conditions (1.5)—(1.8) hold and lete W (2, R") denote
a local minimizer of (1.1), i. ef (Du) € L} (£2) and

loc

/ f(Du)dx < / f(Dv)dx
spt(u—v) spt(u—v)

foranyv € W ,.(£22,R") such thatspt(u — v) € (2. Then there is an open

subset2, of £2 of full measure, i. e|2 ~ 2| = 0, such thatu € C** (29, RY)
forany0 < a < 1.

Let us briefly comment on our conditions:

1.) The(s, u, g)—condition was introduced in [BFM] where full regularity (i. 2

= (2) was established for the scalar case under exactly the same assumptions as
stated here. The key ingredient in [BFM] is a local gradient boundhwhich

follows via Moser iteration technique or from DeGiorgi type arguments. In the
vectorial settingV > 1 such a bound can not be expected to hold true, thus we
could not benefit too much from the arguments in [BFM]. However, as it is shown

in [BFM] for the scalar case, it is easy to check that the result of Theorem 1.1
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continues to hold if we replace (1.8) by the weaker condition (notestlkaty on
account of 2.))

(1.8 ¢ < 2-p) —

provided we add the balancing condition (introduced in [FO])

n

(B) ID*f(Z)||Z? < const(f(Z)+1).

Note that (1.8) makes sense only in the case that 3 and then (1.8) clearly
implies (1.9). For the twodimensional case we have to replacé)(iy8he require-
ment thafu < 2. We leave the details of the proof of this variant of Theorem 1.1 to
the reader.

2.) (1.5) together with the second inequality in (1.7) implies (see [AF3], Lemma
2.1, ifg < 2) the bounds < ¢.

3.) In the case: > 1 we have2 — y < s. If 4 < 0 we clearly may assume that
2 — u < s since2 — p is a lower bound for the growth gf, hence we can replace
sbymax{s,2— u}. For0 < p < 1this inequality is also reasonable: from [AF3],
Lemma 2.1, and the first inequality in (1.7) we get again that i is a lower
growth rate forf. Comparing this to (1.5) we may directly assume thaty < s.

In particular we have by 2.) that— x < q.

4.) Suppose we are given numbérs: p < ¢ such that for allZz ¢ R*Y

a(lZP-1) < f(Z2) < b(lZ]"+1),

p—2 q=2
2

A1+12P) T <D*f(2) < A(1+]2P)

Then we may le, = 2 — p, s = p, and we deduce partial regularity if

n+2
g <p——
n

which is much weaker than (1.4). (Note: [PS] do not need an upper bound for

D*f(Z).)

5.) In [FO] partial regularity was established under the assumptions (1.5)—(1.7),
g < 2, u < 4/n together with condition (B) (see Remark 1.)). Cleayl 2 and

u < 4/n imply (1.8*) so that we have included the result of [FO] on account of
the first remark. But, what is even more important, Theorem 1.1 does not need any
balancing condition of the form (B), the regularity of local minimizers follows from

u < 2 — q+ s2/n which for ¢ close tol and large values of is a much weaker
hypothesis thap < 4/n.
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6.) Let us now sketch an example of an integran@of:, ¢)—growth which is not of
type A., B. or C. For simplicity we assume> 2, for a corresponding subquadratic
example we refer to [BFM].

As shown in [BFM], Section 3, there exists for edck N andt > 2 a function
@k R* — [0, 00) such that

(1.10) @F(n) > aln® forlarge values ofy € R¥
(1.11)  and 0 < D?*&F(n)(r,7) < b(1+ |n?)

t—2
2

7777T€Rk7

hold with positive constants, b. Roughly speaking, the functiabf is constructed
by first considering1 + | Z|?)!/2, then redefining equidistant parts to be linear and
finally smoothing the result of the first two steps. By definitio®{f the exponents

in (1.10) and (1.11) can not be improved, moreover, due to the degene@éppf

the lower bound of (1.11) is the best possible. Next consider numbgrg such
that2 < s < gand2 — . < s. Again, according to [BFM], Section 3, we can
construct a functio®: R™V — [0, o) satisfying

D26(Z)(r,7) > c(1+|2]2) 2 |7]2.

For instance, we may chood€”) = ¢(|Z|) wereyp is defined via

cp(r)://(1+\t|2)7%dtds, reRY.
o Jo

Inthe casg: > 1 @ is of lower growth than any powe#|'+7, 9 > 0, for u < 1 we
getd(Z) < d(1+ |Z|*)~»/2, and it is not possible to improve the exponents.
We then defindz = (21,...2})1<i<ny € R™V)

F(Z) = D(Z) + DN (1) + BN (20, .., 20) -

Then (1.5)—(1.7) hold and if we also impose (1.8) then regularity of local minimiz-
ers follows which can not be deduced from the results stated in A. — C.

Our paper is organized as follows: in Section 2 we introduce a suitable regu-
larizationwv. of our local minimizeru which converges weakly and in energy:ito
on compact subsets. Section 3 investigates higher weak differentiabitity A%
a consequence we obtain uniform local estimates?ifor Dv. which allow us to
give local apriori bounds fol{ Du|| .. Moreover, we prove certain Caccioppoli—
type inequalities. Finally, Section 4 contains the proof of Theorem 1.1 via blow-up
arguments by considering the cages 2 and1 < ¢ < 2 more or less separately.

2 Approximation and some preliminary results

Let ¢ denote a sequence of positive real numbers converging to zero, where we do
not care about relabelling if necessary. Then we definas thes—mollification
of u throughy., where{y;}:~¢ is a family of smooth mollifiers. Moreover, let
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us fix R > 0 andzg € (2. Letting B, := B,.(x) we assum&3;r C {z € 2 :
dist(xz,012) > €}. Foré € (0, 1] we define
f5(2) == f(Z)+6(1+|2])?
and denote by, s the unique solution of the variational problem
Js(w) = fs(Dw)dx ~ min N u.+ qu (BQR,RN).
Bar
Lemma 2.1. If ¢ andd are connected via
1
_ 2
1+e 1+ ||Du€||qu(BZR)

d = d(e) :=
and ifv. = v, 5(c), fe = f5(c), then we have as — 0:
(.) ve —u in W} (Bap,RY),
i) 5 / (1+ [Dv.?)E de 0,
Bar
(ii3.) f(Dve)dx — f(Du) dzx,

BQR BZR

(iv.) fe(Dv.) dx — f(Du)dz .
Bar Bar

Proof of Lemma 2.1We argue as in [BFM], conclusion of Theorem 1.1, i. e. we
use the minimality of. as well as Jensen’s inequality to get

/ F(|Dve|) dz < f(Dv.)dz < fe(Du,) dx
Bar

(2_1) Bar Bar

< f(Du)dz + o(e),
Bar

i. e. we may suppose that
v: —: v weaklyin W} (Bap, RY).

Passing to the limit — 0, lower semicontinuity implies

f(Dv)dz < liminf f(Dve)dx < f(Du)dzx .
Bar €20 JB,g Bar
Finally, the minimality ofu together with strict convexity of (see (1.7)) ensure
thatv = u, thus, with (2.1) the lemma is proved. ad

In the following ¢ is always assumed to be chosen according to Lemma 2.1.
To finish this section, some well known propertiesspfare summarized. Part a.)
of the following lemma is proved in [AF3], Proposition 2.4 and Lemma 2.5, for
the second part we refer the reader to [GM], especially formula (3.3), and to [CA]
(compare Theorem 1.1).



Partial regularity for variational integrals wifs, 1, ¢)—Growth

Lemma 2.2.

a.) Inthe case < 2 the approximative solution satisfies:
(i) veeW?2,.(Bar RY),
(II) DfE(DU5> (S ngvloc(BQR;RnN) R

q—2

(ii.) (1+[Dvc|?*) * Du. € WQTIOC(BQR,R"N) ,
(v)  |D*v-1y,.<n| € Lo (Ber) forall M >0.
b.) Inthe case > 2 we have

(i) o€ Wiy (B2, RY)
(") DfE(DUg) S qu/(q_l),lOC(BQR7RnN) ’

(i) (1+]Dv.|?)* € Wi, (Bar),
q—2
(v) (1+[Dve?)’T Do. € Wi, (Bor, R?N).

3 Apriori L9-estimates and Caccioppoli—-type inequalities

In this section we are going to prove the two main ingredients which will enable us
to perform the blow—up procedure in Section 4. The starting point is the following
Caccioppoli-type inequality for the approximative solutions.

Lemma3.1. There is a real numbet > 0 such that for ally € CZ(Bagr),
0<n<1,andforall@ € R"Y

/ n? D?f. (Dve) (8SDvE, OSDUE) dx
Bar

<clDal [ DD IDv. - QP d,
BaorNsptDn
where summation with respectdae= 1, ..., n is always assumed in the following.

In particular, for all Q € R™N
/ 7> (1+|Dv€|2)7%\D2v€|2daﬂ
Bar

< || Dyl% / |D?f.(Dv.)| | Dv. — QP da.

BaorNsptDn

Proof of Lemma 3.1First of all we recall that. solves the regularized problem,
i. e.

3.1) Df.(Dv.): Dpdz = 0 forall o €W, (Byp, RY).
Bar

Next, denote by, € R™ the unit coordinate vector im,—direction and let for a
functiong on 2

gz +hes) —g(x)
h

Ahg(x) - Zg(l’) = ) hGR,
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denote the difference quotient gtz in the directiore,. Then, givenp € RV,
o = A_p(n? Ay (ve — Qx)), n € C§°(Bar), is admissible in (3.1) and by a
“partial integration” we obtain

/B n® Ay (Df-(Dv.)) : DApve da
32) /B
= _2/3 nAp(Df(Dve)) : Dn @ Ap(ve — Q) da .

Consider now the casg> 2: by Lemma 2.2 and by (1.8pv. is known to be of
classLj,. for somer > ¢ and if F}, denotes the integrand on the right-hand side
of (3.2), then the existence of a real numb@dn), independent ok, follows such
that

|Fh| < C{‘Ah(Dfs(DUg))’ll-HAhveVz} for some ; < q;ql’ qg<ly<r,

thus, equiintegrability of7, in the sense of Vitali’'s convergence theorem is ensured
by Lemma 2.2, b.), (ii.), and passing to the lirhit- 0 the right—hand side of (3.2)
tends to

(3.3) -2 / 105 (ng(Dvg)) D@ (Osve — Qs)dx € (—00,+00) .
Bar
For the left—hand side of (3.2) we observe
1
Ap(Df(Dv)) = / D?f.(Dve + thApDv.) (ApDv,,-) dt
0

and get using (3.3), Fatou’s lemma and Young’s inequality

/ n* D*f.(Dv,) (8SDUE, agDvE) dx
Bagr

IA

1
/ n* lim inf/ D*f. (DvE + thAhDvE) (AhDvg, AhDvs) dt dx
Bar h—0 0

IN

1
L / 02 D2f.(Dv.) (8. Dve, . Dv.) dz
2 Bar

+ﬂDwi/ |D?f.(Do.)| | Do. — QP2 de,
BarNsptDn

i. e. the lemma is proved fof > 2. If ¢ < 2 then we modify the truncation
arguments given in [EM1]. To this purpose fiX > 1 and let fort > 0

v = {1200 Wl
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Givenn, @ as above, then, by Lemma 2.2, a.), (iv.), and by [EM1], Lemma 1,
© = A_p(n?0s(ve — Q)Y (|Dve|)) is seen to be admissible, hence

/ n? ¢ Ay (Df-(Dv.)) : DOsv. dx
Bar
(3.4) = -2 / Ny Ap(Df:(Dv.)) : Dy ® 0s(ve — Q) dz
Bar
-9 / n* Ay (D f-(Dv.)) : DY ® 0,(ve — Q) d .
Bar

By the definition ofy) and again on account of Lemma 2.2, a.), (iv.), both integrals
on the right—hand side of (3.4) can be written as

/ Ap(Df-(Dv.)) : &(z) da

sptn

35) < [ AnDIDW) P do+ €y,
sptn

forasuitable functiog of classL?. Since Lemma2.2,a.), (ii.), shows(D f.(Dv.))
to be of clasg.? _, strong convergence of difference quotients (see [MO], Theorem

loc?

3.6.8 (b)) implies passing to the limit— 0

]Ah(DfE(DvE))\2 — |05 (ng(DvE))|2 almost everywherg
(3.6)
/ |2 (Dfe(Dvo))[Pde = [ |0u(Dfo(Dvo)) | da

sptn sptn

With (3.5) and (3.6) the variant of the dominated convergence theorem, given for
example in [EG2], Theorem 4, p. 21, is applicable (note that almost everywhere
convergence in (3.6) is needed for a proof of this variant). Thus, we may pass to
the limit » — 0 on the right-hand side of (3.4). The left-hand side is handled as
in the case; > 2 and summarizing the results we arrive at (again after applying
Young'’s inequality to the bilinear form? f. (Dv.))

/ n*1 D? f.(Dv,) (8SD’UE, agDUE) dx
Bar
< %/ n?¢ D? f.(Dv.)(dsDv., dsDv.) dx
Bar
relpale [ D*1(Du)| D0~ QP da
sptDn

+c/ |D?fo(Dve) | |D?ve* 1 a1 24| Do <)
sptDn

Here we use the fact thaDv. — Q| < 2 M on [M/2 < |Dv.| < M| for M
sufficiently large and thab (¢(|Dv:|)) < ¢ |D?v.|/M. Before passing to the
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limit M — oo we use Proposition 2.4 of [AF3] once again, i. e. we observe the
estimate

a—=2 g
/ (1 + |Dvs|2)T \D2v€|2 dr < c(t,t’) / (1 + |Dv€|2) 2 o
B B,

being valid for all0 < ¢t < ¢ < 2R. Recalling the growth of D? f(Dv.)| we
immediately get that

M—o0

/ ’D2fE(D’UE)}|D2/UE|21[M/2§|D’UE‘SM]dx — 0
sptDn

on account ofl ;¢ py, — 0 asM — oo and the claim of the lemma follows. O
Besides Lemma 3.1 the following technical proposition is needed to prove

uniform Li—estimates foDv.. So let us introduc®(t) := (1 +12)2~1/4 ¢ >0,

and leth, := ©(|Dv.|).

Proposition 3.2. With this notatiom.. € W.}, .(Bs2r) and

Dh. = ©'(|Dv.|) D|Dv|.

Remark 3.3. If we consider for instance the cage> 2, then the fact thak. is of
classi} follows from Lemma 2.2, b.), (iii.). However, in Lemma 3.4 we need an
explicit formula for the derivative.

Proof of Proposition 3.2.In order to reduce the problem to an application of the
usual chain rule for Lipschitz functions, I&t>> 1 be some real number and let

(1+)5", 0<t<L L
9 t) = 2—p s hg = 6 Vel) -
L(t) {(1+L2)47t>L )
Asaconsequence of Lemma 2:2,isimmediately seen to be of claidg! satisfying
(3.7) Dhl = 0} (|Dv.|) D|Dv.|.

In addition, for0 < r < 2R we have the estimate

/ |Dh§|2dxg/ 0’| D2, | da
B, B[|Dv.|<L]

gc/ (1+|DUE|2)_%‘D2v5|2dx,
B

r

hence, by Lemma 3.1,Dh%|| 2, r~) is uniformly bounded with respect tb
and we may assume

Dhl —: W. in L*(B,,R") as L — co.

Onthe other hand, the obvious convergelte— h. in L?(B,) asL — ocimplies
W. = Dh,, thush. € W3(B,). (3.7) also gives

Dhl — ©'(|Dve|) D|Dv.| almost everywhere
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hence we can identify the limit and the proposition is proved. ad

As mentioned above, we now turn our attention to (uniform) higher integrability
of Dv.. Let us remark, that with uniform growth estimates fobut even without
any control on the derivatives, integrability of the gradient can be slightly improved
(compare, for instance, [CF]). In the situation at hand, Lemma 3.4 can be proved
following the lines of [BFM], Lemma 2.4.

Lemma 3.4. Assume again (1.5)—(1.8) and lgt= "5 if n > 2, in the case
n=2lety > SJF%_Q Then there are real numbees 3, independent of such

that for allr < 2R !

(2=

/31‘(1+|Dv5|2)z“”‘ de < c(r,R) {/BQR(”fe(Dvg)) dm}ﬁ |

In particular, by Lemma 2.1Dv. € L’ "X(Byg, R"™N) C L (Byg,R™)
uniformly with respect te, i. e.

Du € L(Q*H)X<B2R7R7LN) C Le

loc loc

(Bar, R™) .

Proof of Lemma 3.4We consider the case > 3, leta = (22(;@2’; and assume

without loss of generality? < r < 3R/2. Moreover, fix0 < p < R/2 and
n € C5(Byip/2),m = 10nB,, Dy < 4/p. Sinceh. was proved in Proposition
3.2 to be of clas$V}, we obtain using Sobolev’s inequality

2n

/(1+|Dv5|2)ad1‘§/ (n[1+|DUE|2]a%)nf2d:c
B, B

2R

= / (77 hE) nzfz dfl;
Bar

<e( [ Iponopds)” < ofri 4 m)
Bar

where we have set
n- [ iz, 7= [ @D,
Bar Bar

T, is directly seen to satisfy

2—p
T <= | (1+|Du]) " da,
Bar
whereasl, has to be handled via the representation formula for the derivative of
he given in Proposition 3.2:

Ty < c/ (1+ \Dvs\Q)fg |D2v5|2dm.
B

T+p/2
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With Lemma 3.1 (choosin@ = 0) and (1.7) we obtain

/ (14 |Du. ) da
B,

X
2—p g
< % / (1+ [Dv|?) ® dz +/ (1+ \DUE|2)g dz p
P Byr Byt p~Br

where the arguments used for the right—hand side are the same as in [BFM], i. e.
the interpolation procedure demonstrated in [ELM] (starting with the inequality
given after (4.6) in [ELM]) is modified using (1.5):

IDvellg < [IDve |l I1Dve {52, -

This inequality holds witt¥ € (0, 1) defined according t¢ = ¢ + (21_‘#9)X. Note
that the subsequent arguments of [ELM] require the baund 6)q/(2 — p) < 1
whichincase: > 3isequivalentto (1.8). Nowlet = 2and definex = x(2—pu)/2.
Then we have

2x

t

/ (1—|— |D1}5|2)°‘d$ < / (nh,g)ZX dr < ¢ </ |D(77h€)|td5l?) ,
BT BQR B2R

wheret € (1,2) is defined througBy = 2t/(2 —t). Using Holder’s inequality we

get
/BT(1+ |Dv.|?) " dz < ¢ (/}32R|D(nh5)|2d:v>x ,

and we can proceed as before witfi(n — 2) replaced byy. Again we have to
satisfy the requiremen{t — 0)q/(2 — 1) < 1 which forn = 2 is equivalent to
x > s/(s+2— u— q). Butthe latter inequality follows from our choice gf thus
Lemma 3.4 is established also in case: 2. O
Having established higher integrability bfu, the next proposition gives some
preperations needed for the limit version of Caccioppoli’'s—type inequality.

Proposition 3.5. Leth = (1 + |Du|?)?=#)/%, Then

(Z) h e W21,ZOC(B2R)’
(ii.) he — h in W3, (B2g) ase—0,

(#ii.) Dv. — Du  almost everywhere oBop as € — 0.

Proof of Proposition 3.5.We fix 0 < r < 7 < 2R, combine Lemma 3.1 and
Proposition 3.2 to obtain

HDhEH%Q(BT,Rn) <e(l+ ”DUEH%‘J(BF,]R"N)) ’
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hence, by Lemma 3.4, is uniformly bounded irWQ{ZOC(BQR) and we may assume
ase —+ 0

he —: h  weakly in W;’l()c(BgR) and almost everywhere.

The proof ofh = h together with the pointwise convergences exactly follows the
lines of [FO], Lemma 4.1. O

Now we can formulate the limit version of Lemma 3.1.

Lemma 3.6. There is a real numbersuch that for all) € C(Bar),0 <n < 1,
and for allQ € RV

/ 72 D[ dz < ¢|| Dn|l% / |D?f(Du)||Du — QP d.
Baor

BorNsptDn

Proof of Lemma 3.6 Given (@), n as above, Proposition 3.5, lower semicontinuity,
Lemma 3.1 and Proposition 3.2 together imply

/ n*|Dh|?* dx < liminf/ n*|Dhe|* dzx
Bar €20 JBar

< liminf ¢||Dnl2, / |D? f-(Dw.)||Dv. — QJ? da
=0 BarNsptDn

(3.8) = liminf ¢ || Dn||%, / |D?f(Dv.)||Dve — Q| d .
=0 BarNsptDn

Here, for the last equality, we made use of Lemma 2.1, (ii). Next, by the pointwise
convergence almost everywhere stated in Proposition 3.5, (iii.), we have

(3.9)|D*f(Dve)||Dv: — Q|* — |D*f(Du)||Du—Q|* a.e.ase —0.

Finally, by Lemma 3.4 we know thaD? f (Dv. ) | | Dv. — Q|* is uniformly bounded
in L7 (Byg) for somer > 0, hence

loc

|D?f(Dv.)||Dve — Q> —: 9 in L7 (Bagr),

loc

(3.10)

/ |D? f(Dve)||Dve — Q| dz — vdx
BQR BZR

ase — 0. From (3.9), (3.10) we clearly get = |D? f(Du)| |Du — Q|?, which
together with (3.8) gives the proof of Lemma 3.6. O
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4 Blow-up

Now we fix a local minimizeru which by Lemma 3.4 is known to be of class
W;_VZOC(Q,RN). The final step is to prove partial regularity ofvia a blow—up
procedure. As usual, the main tool is the decay estimate given in Lemma 4.1. The
iteration of Lemma 4.1 leading to partial regularity is well known. Depending on
the caseg > 2 andq < 2 an appropriate excess function has to be introduced: in

the case; > 2 we let for ballsB,.(z) € Bg C {?

Et(x,r) = ][ |Du — (Du)am|2 dy + ][ |Du — (Du)y |7 dy ,
B.(x) B, (x)

where (g),, denotes the mean value of the functigrwith respect to the ball
B.(z). In the case < 2 we define for alt € R¥, k € N,

V() = (1+ €)' €.

The properties ol are studied for example in [CFM], in particular we refer to
Lemma 2.1 of [CFM]. With these preliminaries we let ipk 2

E (z,r) := ][ \V(Du(x)) —V((Du)gw)|2 dy,
B, (z)

a definition which makes sense singe is the growth rate o¥. In both cases we
have

Lemma4.1. Fix L > 0. Then there exists a constafit (L) such that for every
0 <7 < 1/4thereis are = ¢(L, 7) satisfying: if B,.(x) € Bg and if we have

’(Du),w‘ <L, E(zr) <elL,T1),

then
E(z,7r) < Cu(L)T*E(x,r).

Here and in the following? denotes — depending @n- E+ or E~ respectively.

Proof of Lemma 4.1.The proof is organized in four steps, always distinguishing
the caseg > 2 andq < 2. If ¢ > 2 then we mostly refer to [FO], the cage< 2
follows the lines of [CFM] and [EM2].

Step 1. (Blow—up and limit equatiofip argue by contradiction, assume that- 0

is fixed, the corresponding constarit(L) will be chosen later on (see Step 4). If
Lemma 4.1 is nottrue, then for soe< 7 < 1/4, there are ball®,  (z,,) € Br
such that

m—r 00

(4.1) (DWW pr| <L, E(zm,rm) = Ab, ™50,

(4.2) E(@m, Trm) > Cum? A2,

2
m
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Now a sequence of rescaled functions is introduced by letting

am = (U)rm,rma Ap = (Du)xm,rm )

U (2) 1=

= )\”LT”L [U(Q}’m + T‘mz) — A — T'mAmZ:I |f |Z| g 1.

Passing to a subsequence, which is not relabeled, (4.1) implies
(4.3) Ap —: A in R,
We also observe that
Dup,(2) = A [Du(zm +rmz) — Am], (um)og = 0, (Dup)oq = 0,

and concentrate for the moment on the case2. Using (4.1) and (4.2) we have

(4.4) ][|Dum\2dz + )\?n_Q ][|Dum\qdz = )\;12 Et (2, rm) =1,

B1 Bl
(4.5) ][|Dum - (Dum)o,7|2 dz + X412 ][\Dum — (Dum)o,-|?dz > C, 2.
Bl Bl

With (4.4) we obtain as — oo

(4.6) U — G In Wy (B, R™Y),
4.7) Am Dy, — 0 in L?(B;,R™) and almost everywhere

_2
(4.8)  Am ‘Duy, — 0 in LB, R™Y) if ¢>2.

Considering the casg< 2 we follow [CFM], Poposition 3.4, Step 1, to see

(4.9) ﬂv(Dum(z))sz < ¢(L),
By
hence the §/2—growth” of V' (compare [CFM], Lemma 2.1, (i)) implies the exis-
tence of a finite constant, independentafsuch that
[ Dum |l pa(B, govy < c.
Thus, in the subquadratic situation (4.6)—(4.8) have to be replaced by

(4.10) Uy — @ in Wy (B, R™),
(4.11) X\, Duy — 0 in L9(By,R™) and almost everywhere

In both cases the limit satisfies a blow—up equation stated in
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Proposition 4.2. There is a constan®'*, only depending ot such that for all
(TS Col (Bl7 RN)

D?f(A)(Di, Dp)dz =0,

By

(4.12) ][yDa — (Da),|*dz < C*72.

B.
Proof of Proposition 4.2.The proof of the limit equation fo§ > 2 is well known
and can be taken from [EV], p. 236. The subquadratic case again is treated in
[CEM], Step 2. Inequality (4.12) of Proposition 4.2 follows from the theory of

linear elliptic systems (compare [Gi], Chapter 3) where the subquadratic case also
involves Proposition 2.10 of [CFM]. O

Step 2. Proceeding in the proof of Lemma 4.1 we have to show the following
proposition which will imply strong convergence in the third step.

Proposition 4.3. Letq > 2and0 < p < 1 or consider the case < 2 together
with0 < p < 1/3. Then

lim [ (14 |Am + A Dit + Ay Dwpn[2)” 2 [Duwy [ dz = 0,

m— 00 Bp
where we have set,,, = u,, — .

Remark 4.4. The restrictionp < 1/3 in the case; < 2 is needed to apply the
Sobolev—Poincd@type inequality, Theorem 2.4 of [CFM].

Proof of Proposition 4.3 Againg > 2 is the first case to consider, where the basic
ideas are given for example in [EG1]. Here we argue exactly as in [FO], pp. 410,
i. . we use the minimality of together with the convexity of, and conclude for

all p € C}(B1,RY), ¢ >0,

1
/ / <pD2f(Am + A DU+ s\, Dwm) (Dwyy, Dwy, ) (1 — s)dsdz
B, JO
— 22 / O {F(Am + A D) — (A + A Dit) } dz
B1
A / @D f(An + A Dit) : Dy, dz
B
< {/ D@|? [wyn 2 dz + AL / Dy wm|qdz}
Bl Bl
) / Df (A + A (1= @) Dty + 9 D) ): (Dp @ (i = wn))
B

—A;}/ ©Df(Ap + A D) : Dw,, dz .
B
(4.13)
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Clearly, (4.13) is the analogue to inequality (6.6) in [FO]. As demonstrated in [FO]
we can discuss the last two integrals on the right—hand side of (4.13) which finally
bounds the left-hand side of (4.13) by the quartti{)ﬁ + I+ 13} where we have

I ::/ \Dg0|2\wm|2dz+)\$,72/ Dl [wy|? dz ™25 0.
Bl Bl

The limit behaviour follows from the weak convergenceuqf in Wy (By, R"Y)
and from
~q

(4.14) Am T — 0 in L9(By,RY)  as m — oo.

In fact, the latter convergence is obtained by (4.8) and by Pdrscarequality
which together with(w,, )o,1 = 0 implies (4.14). Further we have

Iy :=/ IDwmI\Dsollwm\dZ+AZz_2/ | D |*~ [Dep| |wim] dz
By B

q

< [ 1Dwnl 1Dl d= + (D) ( / A%:QDmedz) "
B4 B

I
X (/ A?n_2|wm|qdz)
By

and again we use (4.14) to sBe— 0 asm — oo. The third part

1

1
Iy = ‘/ / D2f (A + 5 A Dit) (Dit, D(pw,,)) dsdz‘
B1 JO

is immediately seen to vanish as — oo and the proposition is provedgf> 2.

Forg < 2 we now benefit from [EM2] (compare [EV]) since the proof of higher
integrability given in [CFM], Step 3, is adapted to balanced structure conditions.
Thus, let for¢ € R™N

f(Am +)\m£) B f(Am) - )\me(Am) :g
AQ

m

fm(g) =

and define fob < p < 1/3,w € W}, (B3, RY)

) = [ fu(Duw)ds.
B/’
The first claim to prove is

(4.15)limsup{f;)”(um) - I;"(ﬁ)} < 0 foralmosteveryp € (0,1/3).
m— 00

To verify (4.15) we fixp as above, choose< s < p,n € C§°(B,), 0 <n <1,
n=1onB;, |Vn| <c/(p—s)and definep,, = (& — up,)n. NOW, u,, obviously
is a local minimizer of/;* and together with Lemma 3.3 of [CFM] this yields
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I;n(um) - I;;n(a) < I;',”(Um + Pm) — I;n(a)

- /B 5, [ fn(Dtt + Do) = fn(D)] 2

< WANB [V D)

+ |V (Am (@ — um) @ Dy + Ay Dt

2

+Am (1 = 1) Duyy,) ‘2)] dz

C ~
g E B,~B |:|V()\WLDU)

+(p—s)72 |V (Am(t — um))ﬂ dz.

|V (Am Duy)|*

s

Next, a family of positive, uniformly bounded Radon measyr€son B, ;3 is
introduced by letting

4 (S) = /S%Uvumpm

g |V()\m Dum)ﬂ dz.

We may assume that™ converges in measure to a Radon meagiog B, /3. Ex-
actly as in [EM2], the Sobolev-Poind@type inequality proved in [CFM], Theorem
2.4, gives for someé < 6 < 2

By~ B+ (0= ([l 2) 29] ,

hence, by taking first the limit: — oo and then the limit 1 p, we get (4.15) for
any0 < p < 1/3 such thaj(0B,) = 0 which is true for a. ap.

Once (4.15) is established for soie< p < 1/3, the following identity is the
starting point to derive an estimate for the left—hand side:

I () = I)(4) < c

I (um) — I (0) = X2 /B {f(Am + Am D) — f(Ap + A\ D)

AN DF(A) : Dwm] dz
1
_ )\,‘nl/ / [Df(Am+AmDa+tAmem)
B, Jo
—Df( A+ A Dﬁ)} - Dw,, dt dz

+>\;1/ [Df(Am + A D) — Df(Am)| : Dwpn dz
B

P

= (D + (L), .
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Local smoothness af immediately impliedim,,,— o (1), = 0. On account of

1 1
(D) = / / / t D2 f (A + A Dt + 5t Xy Dwyy ) (Dwy, Dw,y, ) ds dt dz
B,J0 JO

> c/ (14 A + A Dt + A Dwpn[?) ™ % [ Dy |2 d2
B

and by (4.15) the proposition is proved for almost all, hence foraay0, 1/3).0
Step 3a. (Strong convergence fob 2)

Proposition 4.5. In the case; > 2 we have asn — oo

i.) Du,, — Dain L} (B, R™);

2

(i2.)  Am * Dum — 0 in L

loc

(4.16)
(B, R™Y) if ¢ > 2.

Proof of Proposition 4.5.Here we have to distinguish two subcases: kot 0
the first convergence follows directly from Proposition 4.3. Using this fact, local
smoothness of and again Proposition 4.3, the next conclusion is

(4.17) / M H | Dw,y, > Hdz ™27 0 forall 0<p<1.

Bﬂ
The proceed further, we introduce the auxiliary functigns (see [FO]),

2—u
P

(4.18) Y = A [(1+ [Apy 4 A D) 5 = (140 P) 7]

and by Lemma 3.6, (4.6), (4.8), (1.7) we can estimate (p < 1)

/ |l)11[}7”"|2 dz < C(p) |D2f(Am+)\mDum)||Dum‘2dZ < C(,D)
B

B,

If we now let@(Z) := (1 4 |Z|?)?~m/4, Z ¢ RN, then

1
[Vm| = A1 ’/ di@(Am +t>\mDum)dt’
1 0 t
< C‘/ Duy, : DO(Ap, +t/\mDum)dt’
01 -
< C/ | D | (14 [Apy + t Ay Dua|?) ™ * dt
0
< ¢ (1D | + X Dt [175).

With this inequality we obtain

(4.19) / [Ym|?dz < c(p) forall 0<p<1.

By
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In fact, (4.19) is obvious for, = 0. If 1 < 0, then (4.19) is just a consequence of
(4.17). Thus, we have proved that

(4.20) sup |¥mllwys,) < clp) < oo forall 0<p<1

and this will imply (4.16), (ii.): to this purpose we fix some real numbérs> 1
and letU,,, = U, (M, p) := {2z € B, : Ay |Duy| < M}. On one hand, local
L2—convergence ang > 2 prove

/ Ag,;2|Dum|qczz§/ A;1,;2|Dwm\qciz+/ =2 | Dal dz

m m m

c/ )\fn*2<|Dum|q*2
Um

+\Dﬂ|q*2)|Dwm\2+/ X2 | Ditfe dz

m

IN

(4.21) -0 asm— .

On the other hand, observe that far sufficiently large and for € B, ~ Uy,

2—p

Y (2) > eATIANE | Dum(2) 7, e

©a

A== q—2 q
Am i " (2) = AL | Dugy, (2)]9 .

Since (1.8) guarante@g/(2 — u) < 2n/(n — 2), since by (4.20)),, is uniformly
bounded inZ?"/("=2) and since; — 2 + ug/(2 — p) > 0 follows fromg > 2 — p,
we can conclude

(4.22) / A2 Duy,|9dz — 0 forall 0<p< 1
Byl

asm — oo. Summarizing the results, (4.21) and (4.22) prove Propostion 4.5 in the
caseu < 0.

Now suppose that: > 0. Proposition 4.3 implies in the case at hand for any
0<p<l1

I3
2

|Dw,|?*dz — 0 asm — oo

/ (14 [A Dwpa?) ™

P

which immediately gives
(4.23) / |Dwy,|*dz — 0 asm — oco.
Unm

HereU,, is defined as above for fixetll andp. Also as above we introduag,,
and observe that noWw,,| < ¢|Du,,| is obvious, i. e. (4.20) remains to be true in
the case: > 0. If M is chosen sufficiently large, then

4 %
[Ym| 7% Ama ™ > |Dup|*  on B, ~ Uy,



Partial regularity for variational integrals wifs, 1, ¢)—Growth

and sincel/(2 — u) < 2n/(n — 2) < u < 4/n, the last inequality being true on
account ofy > 2, we get

(4.24) / |Dw,,|?dz ™=5° 0 forall 0 <p< 1.
Bp~Unn,

With (4.23) and (4.24) the first claim of (4.16) also is proved in the gase 0.
(4.16), (ii.), forp > 0 follows exactly as for the case < 0 and the proof of the
proposition is complete. O

Step 3b. (Strong convergence fox 2)
Proposition 4.6. If ¢ < 2, then foranyd < p < 1/3

1
lim —/ V(A Dwp)[Pdz = 0.
X JB,

m—r 00

Proof of Proposition 4.6. In the subquadratic case, the auxiliary functiop,
introduced in (4.18) is handled via Lemma 2.1, (vi.) of [CFM]. We have

/ |Dwm|2dz§c/B (14 P D) ‘T | D d2

p
Cc

< —

][|V()\m Dum)|2 dz
B

c
A2

IN

V(Du— Ap)|” da
m B(zm,Rm)
2 ][ V(Du) = V(4| dz < const.

< 2
B(Im ;R'm)

m

forany0 < p < 1. In addition we havéy,,,| < ¢|Du,,|, henceyp,, € qu,loc(Bl)!
thusy,, € L. (B1) with ¢1 := ng/(n —q). Iterating this argument we again have
verified

(4.25) sup [|¥m|lwys,) < clp) < oo forall 0<p<1.

Assume now that < p < 1/3. With M andU,, as before, (4.23) is again a
consequence of Proposition 4.3. Let us write ((CFM], Lemma 2.1)

o [ VO Dwn)[*dz

m

c

A%/B [V (A Dwn)|* dz <

+ |V (A Du )| dz
/\m B,~Un,

c 2
+ 1 |V (A D) dz.
A2 B,~Upn,
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Then, by (4.23)

1

z |V()\mem)‘2dz§/ |Dwm|2(1+)\$n|Dwm|2)q%2dz

S/ | Dw,|* dz ™% 280 .
Unm
The second term vanishesmas— oo provided that
/ A2 | Duy,|?dz — 0 as m — oo.
~U,
To see this we recall the estimates gy, stated after (4.21) being valid also in the

case under consideration and with the same reasoning we obtain (4.22) where now
we make use of the apriori bound (4.25). Finally, we use the local boundedness of

D1 to see
< / |Da|? dz
By~Unm,

1
<Dl o, gany By ~ Un| ™50

A2
)\T / |V(Am DU)
m J B,~Up,

on account of\,,, Du,, — 0 a. e. onB; asm — oo (see (4.11)). This completes
the proof of Proposition 4.6. O

Step 4. (ConclusionpProposition 4.5 together with (4.5) gives in the case 2

][\Dﬁ — (Da),|*dz > C, 72,

thus we have a contradiction to (4.12) if we choGse= 2C"™.

If ¢ < 2, then we estimate according to [CFM], p. 24,

< lim é][{‘V()\mem)‘Q

m—00 )\2 m—00
B,

+V (A (Di — (Da),))|

V(A (D)7 = (D)) [} dz,

where the first integral is handled by Proposition 4.6. The last one vanishes when
passing to the limitn — oo since we may first estimate

][|V (Dum)T)) dz < A7 ][y — (D) | dz

and then use (4.10) for the right—hand side. The second integral again is estimated
by (4.12). Thus, choosing, sufficiently large we also get the contradiction in the
casey < 2 and the lemma is proved. O
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