Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Dr. Yana Kinderknecht SoSe 2017

Operatorhalbgruppen, Markovsche Prozesse und Evolutionsgleichungen Übungsblatt 4 (14 Punkte)

Abgabe: Vor der Vorlesung, 03.07.2017.

Aufgabe 8. (6 Punkte)

Seien $b \in \mathbb{R}^d$ und c > 0 gegeben. Finde (in der Form von Integraloperatoren) die Halbgruppe $(T(t))_{t \geq 0}$ auf $C_{\infty}(\mathbb{R}^d)$, deren Erzeuger die Abschließung von $(L, C_c^{\infty}(\mathbb{R}^d))$ ist, wobei

$$L\varphi := \Delta \varphi + b \cdot \nabla \varphi - c\varphi$$
 für alle $\varphi \in C_c^{\infty}(\mathbb{R}^d)$.

Hinweis: Benutze Aufgaben 3 (c), 6, 7.

Aufgabe 9. (2+2+2+2=8 Punkte)

a) Sei $x \in \mathbb{R}$. Zeige, dass für jedes t > 0 die inverse Fourier-Transformation der Funktion $\lambda_t(x) := (2\pi)^{-1/2} e^{-t|x|}$ durch die Funktion ρ_t gegeben ist, wobei

$$\rho_t(x) := \frac{t}{\pi(t^2 + x^2)}.$$

- b) Zeige, dass die Familie $(T(t))_{t\geq 0}$ mit $T(0) := \text{Id und } T(t) : T(t)\varphi = \varphi * \rho_t$ eine stark stetige Kontraktionshalbgruppe auf $C_{\infty}(\mathbb{R})$ ist. (Die ist Cauchysche Halbgruppe genannt).
- c) Finde den Pseudodifferentialoperator, der die Cauchysche Halbgruppe erzeugt.
- d) Sei $\mu_t(dx):=\rho_t(x)dx$. Sei $(\xi_t)_{t\geq 0}$ ein $\mathbb R$ -wertiger stochastischer Prozess mit

$$P_{\xi_t}(B) := \mathbb{P}(\xi_t \in B) = \mu_t(B), \quad \forall \ B \in \mathcal{B}(\mathbb{R}).$$

Zeige, dass für H=1 und jedes a>0 gilt:

$$P_{\xi_{at}} = P_{a^H \xi_t}, \quad \text{d.h.} \quad \xi_{at} \sim a^H \xi_t.$$

(Man sagt: $(\xi_t)_{t\geq 0}$ ist stabil mit Index $\alpha=\frac{1}{H}=1$, oder selbstähnlich mit Hurst-Parameter H=1.)

Aufgabe 10. Präsenzübung. (2+2=4 zusätzliche Punkte)

Sei $(\xi_t)_{t\geq 0}$ ein Lévy Prozess mit Lévy Charakteristiken $(0, b, A, \nu)$.

- (a) Zeige, dass $(X_t)_{t\geq 0}$, $X_t:=-\xi_t$ für alle $t\geq 0$, auch ein ein Lévy Prozess ist; finde Lévy Charakteristiken von $(X_t)_{t\geq 0}$.
- (b) Zeige, dass $(Y_t)_{t\geq 0}$, $Y_t:=\xi_t+\gamma t$ für alle $t\geq 0$ und ein $\gamma\in\mathbb{R}$, auch ein ein Lévy Prozess ist; finde Lévy Charakteristiken von $(Y_t)_{t\geq 0}$.

Die Übungsblätter sind auf unserer Homepage erhältlich:

 $https://www.math.uni\text{-}sb.de/ag/fuchs/OHGMPEG/index.html}\\$