

PDE and Boundary-Value Problems (Winter Term 2013/2014) Assignment H4 - Homework

Problem 4.1 (Laplace Transform - 6 Points)

Solve the problem

PDE: $u_t = u_{xx}$, $0 < x < \infty$, $0 < t < \infty$ BC: $u(0,t) = \sin(t)$, $0 < t < \infty$ IC: u(x,0) = 0, $0 \le x < t\infty$

by means of the Laplace transform (transform t). What is the physical interpretation of this problem?

Problem 4.2 (Laplace Transform and Maple - 8 Points)

We seek the temperature distribution u(x,t) in a thin rod over the interval $0 < x < \infty$ whose lateral surface is insulated. The left end of the rod is constarined at a varying temperature $q(t) = \frac{1}{\sqrt{t}}$, and the rod has an initial temperature distribution u(x,0) = 0. There is no heat source in the system and the termal diffusivity of the rod is k = 1/50.

Using Maple solve the problem by means of the Laplace transform (transform t). Show the animation of the spatial-time temperature distribution u(x, t) in the rod for $0 \le t \le 5$.

(*Hinweis:* use the Maple commands **laplace** and **invlaplace** for the Laplace transform and the inverse Laplace transform, respectively.)

Problem 4.3 (Solving IBVP - 6 Points)

Suppose we have a metal rod (laterally insulated) and we supply an *initial impulse* of heat at the right-hand side (the left-hand side is fixed at zero). Suppose the initial temperature of the rod is zero (some reference temperature) and the temperature at the midpoint x = 0.5 is measured at various values of time, so that we have the following table:

Values of Time	Midpoint Temperature
t_1	w_1
$t_2 = 2t_1$	w_2
$\begin{array}{c} t_3 = 3t_1 \\ \vdots \end{array}$	w_3
$t_n = nt_1$	w_n

Using this data, how could we approximate the temperature responce at the points $u(0.5, t_n)$ due to the BCs

- (a) $u(1,t) = \sin(t)$
- (b) u(x,t) = f(t) (arbitrary f(t))?

Problem 4.4 (Duhamel's Principle - 4 Points)

Using Duhamel's principle, what is the solution of the IBVP

PDE:
$$u_t = \alpha^2 u_{xx},$$
 $0 < x < 1, \quad 0 < t < \infty$
BCs: $\begin{cases} u(0,t) = 0\\ u(1,t) = \sin(t) \end{cases},$ $0 < t < \infty$
IC: $u(x,0) = 0,$ $0 \le x \le 1$

Deadline for submission: Wednesday, December 11, 10am