PDE and Boundary-Value Problems Winter Term 2014/2015

Lecture 11

Saarland University

11. Dezember 2014

Purpose of Lesson

 To derive the fundamental solution of the heat equation and discuss the corresponding solutions of homogeneous and nonhomogeneous IVPs.

Fundamental solution of the heat equation:

Problem 11-1

To find the function u(x, t) that satisfies

PDE:
$$u_t = \Delta u$$
, $x \in \mathbb{R}^n$, $0 < t < \infty$

IC:
$$u(x,0) = u_0, \qquad x \in \mathbb{R}^n$$

We will solve problem 11-1 by applying the exponential Fourier transform with respect the spatial variables x.

We define

$$U(t,\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(t,x) e^{-i\xi \cdot x} dx, \quad \xi \in \mathbb{R}^n.$$

Step 1. (Transformation)

 We take n Fourier transforms with respect to all x_i-variables. As a result we get the following ODE in t

ODE:
$$U_t(t) + |\xi|^2 U(t) = 0$$
, $0 < t < \infty$
IC: $U(0) = \mathcal{F}[u_0]$ (11.1)

Step 2. (Solving the transformed problem)

• Remember the new variable ξ is nothing more than a constant vector in this differential equation. So, the solution to problem (11.1) is

$$U(t,\xi) = \mathcal{F}[u_0](\xi)e^{-|\xi|^2 \cdot t}.$$

Step 3. (Finding the inverse transform)

We compute

$$u(x,t) = \mathcal{F}^{-1} [U(t,\xi)] = \mathcal{F}^{-1} [\mathcal{F}[u_0](\xi)e^{-|\xi|^2 \cdot t}]$$

Due to the convolution property we can write

$$u(x,t) = \mathcal{F}^{-1} \left[\mathcal{F}[u_0](\xi) \right] * \mathcal{F}^{-1} \left[e^{-|\xi|^2 \cdot t} \right]$$

$$= u_0(x) * \left[\frac{1}{(2t)^{n/2}} e^{-|x|^2/(4t)} \right]$$

$$= \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-y|^2/(4t)} u_0(y) dy$$

5/17

Fundamental solution

The function

$$\Phi(x,t) := \left\{ egin{aligned} rac{1}{(4\pi t)^{n/2}} e^{-|x|^2/(4t)}, & x \in \mathbb{R}^n, \ t > 0 \ 0, & x \in \mathbb{R}^n, \ t < 0 \end{aligned}
ight.$$

is called the fundamental solution of the heat equation.

The fundamental solution has the following properties:

- Φ is singular at the point (0,0)
- $\Phi(x,t) = \Phi(|x|,t)$, i.e., the fundamental solution is radial in the variable x.
- For each time t > 0 we have $\int_{\mathbb{R}^n} \Phi(x, t) dx = 1$.
- $\bullet \ \Phi_t = \Delta \Phi, \quad x \in \mathbb{R}^n, \ t > 0.$

Remarks

• If u_0 is bounded, continuous, $u_0 \ge 0$, and $u_0 \ne 0$, then

$$u(x,t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-y|^2/(4t)} u_0(y) dy$$

is in fact positive for all points $x \in \mathbb{R}^n$ and times t > 0.

- We interpret the above observation by saying the heat equation forces infinite propagation speed for disturbances.
- If the initial temperature is nonnegative and is positive somewhere, the temperature at any later time is everywhere positive.

Now let us turn our attention to the nonhomogeneous IVP.

Problem 11-2

To find the function u(x, t) that satisfies

PDE:
$$u_t - \Delta u = f$$
, $x \in \mathbb{R}^n$, $0 < t < \infty$

IC:
$$u(x,0) = 0$$
, $x \in \mathbb{R}^n$

Solving of problem 11-2:

First of all, we recall that the mapping

$$(x,t)\mapsto \Phi(x-y,t-s)$$

is a solution of the heat equation (for given $y \in \mathbb{R}^n$, 0 < s < t).

Now for fixed s, the function

$$u = u(x, t, s) = \int_{\mathbb{R}^n} \Phi(x - y, t - s) f(y, s) dy$$

solves the problem

$$\begin{cases} u_t(\cdot,s) - \Delta u(\cdot,s) = 0 & \text{in } \mathbb{R}^n \times (s,\infty) \\ u(\cdot,s) = f(\cdot,s) & \text{on } \mathbb{R}^n \times \{t=s\} \,. \end{cases}$$
 (11.1s)

Solving of problem 11-2 (cont.):

- Observe that (11.1s) is an IVP of the form 11-1, with the starting time t = 0 replaced by t = s, and u_0 replaced by $f(\cdot, s)$.
- Duhamel's principle asserts that we can build a solution of problem 11-2 out of the solutions of (11.1s), by integrating with respect to s. The idea is to consider

$$u(x,t)=\int\limits_0^tu(x,t,s)ds.$$

Solving of problem 11-2 (cont.):

Rewriting, we have

$$u(x,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(x-y,t-s) f(y,s) ds$$

$$= \int_{0}^{t} \frac{1}{(4\pi(t-s))^{n/2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4(t-s)}} f(y,s) dy ds,$$

for $x \in \mathbb{R}^n$, t > 0.

Combining the solutions of problems 11-1 and 11-2, we discover that

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)u_0(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)f(y,s)ds$$

is a solution of the nonhomogeneous problem

Problem 11-3

PDE:
$$u_t - \Delta u = f$$
, $x \in \mathbb{R}^n$, $0 < t < \infty$

IC:
$$u(x,0) = u_0$$
, $x \in \mathbb{R}^n$

Assume $U \subset \mathbb{R}^n$ is open and bounded, and fix a time T > 0.

Remarks

We define the parabolic cylinder

$$U_T := U \times (0, T].$$

• The parabolic boundary of U_T is

$$\partial' U_T := \overline{U_T} \setminus U_T$$
.

• We note that U_T includes the top $U \times \{t = T\}$. The parabolic boundary $\partial' U_T$ comprises the bottom and vertical sides of $U \times [0, T]$, but not the top.

Properties of solutions to the heat equation

1. (Strong maximum principle)

Assume $u \in C^{2,1}(U_T) \cap C(\overline{U_T})$ solves the heat equation in the parabolic cylinder U_T .

(i) Then

$$\max_{\overline{U_T}} u = \max_{\partial' U_T} u.$$

(ii) Furthermore, if U is connected and there exists a point $(x_0, t_0) \in U_T$ such that

$$u(x_0, t_0) = \max_{\overline{U_\tau}} u,$$

then

u is a constant in $\overline{U_{T_0}}$.

Remarks

- Assertion (i) is the maximum principle for the heat equation and
 (ii) is the strong maximum principle.
- Similar assertions are valid with "min" replacing "max".
- So if u attains its maximum (or minimum) at the interior point, then u is constant at all earlier times. The solution may change at times $t > t_0$, provided the boundary conditions alter after t_0 .

Properties of solutions to the heat equation (cont.)

2. (Uniqueness on bounded domains)

Let $g \in C(\partial' U_T)$ and $f \in C(U_T)$. Then there exists at most one solution

$$u\in \textit{\textbf{C}}^{2,1}(\textit{\textbf{U}}_{\textit{\textbf{T}}})\cap \textit{\textbf{C}}(\overline{\textit{\textbf{U}}_{\textit{\textbf{T}}}})$$

of the problem

$$\begin{cases} u_t - \Delta u = f & \text{in } U_T \\ u = g & \text{on } \partial' U_T. \end{cases}$$

Properties of solutions to the heat equation (cont.)

3. (Smoothness)

Suppose $u \in C^{2,1}(U_T)$ solves the heat equation in U_T . Then $u \in C^{\infty}(U_T)$.

Remark

• The regularity assertion is valid even if u attains nonsmooth boundary values on $\partial' U_T$.