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Purpose of Lesson
To show how BVPs, IBVPs, and other types of physical models
can be written in dimensionless form. In this form, we replace the
original variables of the problem by new dimensionless ones (they
have no units).

To solve the IBVP for the wave equation in three dimensions and
show how this solution satisfies Huygen’s principle.

Using the method of descent to solve the IVP for the wave
equation in two dimensions.

To show that the two-dimensional solution doesn’t satisfy
Huygen’s principle.

To introduce two new integral transforms (finite sine and cosine
transforms) and to show how to solve BVPs (particularly
nonhomogeneous ones) by means of these transforms.
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Dimensionless Problems

Dimensionless Problems

The basic idea behind dimensional analysis is that by introducing
new (dimensionless) variables in a problem, the problem becomes
purely mathematical and contains none of the physical constants
that originally characterized it.

In this way, many different equations in physics, biology,
engineering and chemistry that contain special nuances via
physical parameters are all transformed into the same simple
form.
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Converting a Diffusion Problem to Dimensionless Form

Problem 15-1
To find the function u(x , t) that satisfies

PDE: ut = α2uxx , 0 < x < L, 0 < t <∞

BCs:

{
u(0, t) = T1

u(L, t) = T2
0 < t <∞

IC: u(x ,0) = sin (πx/L) 0 6 x 6 L
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Converting a Diffusion Problem to Dimensionless Form

Our goal is to change problem 15-1 to a new equivalent formulation
that has the properties:

1 No physical parameters (like α) in the new equation
2 New IC and BCs are simpler.

To do this, we will introduce three new dimensionless variables U, ξ,
and τ that take the place of u, x , and t , respectively

u −→ U (dimensionless temperature)
x −→ ξ (dimensionless length)
t −→ τ (dimensionless time)

We carry out these transformations one at a time for simplicity.
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Step 1. (Transforming The Dependent Variable→ U)

We define U(x , t) by

U(x , t) =
u(x , t)− T1

T2 − T1

It’s clear that this new temperature U(x , t) has no units, since we
are dividing ◦C by ◦C.
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Step 1. (Transforming The Dependent Variable→ U)

The original problem 15-1 has now been transformed into

Problem 15-1a

PDE: Ut = α2Uxx , 0 < x < L, 0 < t <∞

BCs:

{
U(0, t) = 0
U(L, t) = 1

0 < t <∞

IC: U(x ,0) =
sin (πx/L)− T1

T2 − T1
0 6 x 6 L
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Step 2. (Transformnig the Space Variable x → ξ)

Since 0 6 x 6 L, we pick

ξ = x/L.

The next problem (in U, ξ, and t) is

Problem 15-1b

PDE: Ut = (α/L)2Uξξ, 0 < ξ < 1, 0 < t <∞

BCs:

{
U(0, t) = 0
U(1, t) = 1

0 < t <∞

IC: U(ξ,0) =
sin (πξ)− T1

T2 − T1
0 6 ξ 6 1
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Step 3. (Transforming the Time Variable t → τ )

How to introduce a new dimensionless time isn’t quite so clear as
choosing the first two variables.

Since our goal is to eliminate the constant [α/L]2 from the PDE,
we proceed as follows:

1 Try a transformation of the form τ = ct , where c is an unknown
constant.

2 Compute ut = uττt = cut .

3 Substitute this derivative into the PDE to obtain

cuτ = [α/L]2uξξ

and, hence, pick c = [α/L]2. This gives us our new time

τ = [α/L]2t .
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Step 3. (Transforming the Time Variable t → τ )

Using this transformation on our problem 15-1b, we have the
completely dimensionless problem (U, ξ and τ )

Problem 15-1c

PDE: Uτ = Uξξ, 0 < ξ < 1, 0 < τ <∞

BCs:

{
U(0, τ) = 0
U(1, τ) = 1

0 < τ <∞

IC: U(ξ,0) = φ(ξ) 0 6 ξ 6 1

where φ(ξ) =
sin (πξ)− T1

T2 − T1
.
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

New dimensionless problem 15-1c has the following properties:

1 No parameters in the PDE.

2 Simple BCs.

3 IC hasn’t essentially been changed (still a known function)

The solution to this dimensionless problem can be found once and
for all.

So, if a scientist transformed the original problem to the
dimensionless one and found the answer U(ξ, τ) in a textbook or
research journal, he or she could find the solution u(x , t) to the
original problem by computing

u(x , t) = T1 + (T2 − T1)U(x/L, (α/L)2t).
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Dimensionless Problems Converting a Diffusion Problem to Dimensionless Form

Remarks
Dimensional analysis is especially important in numerical analysis,
since most computer programs are written in a general form and
don’t solve problems with a great many physical parameters.

It’s not always necessary to transform all the variables into
dimensionless form; sometimes only one or two have to be
transformed.
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The Wave Equation in Three Dimensions (Free Space)

The Wave Equation in Three Dimensions (Free Space)

Earlier, we discussed the infinite vibrating string with ICs and
showed how it gave rise to the D’Alembert solution.

Another application of the one-dimensional wave equation would
be in describing plane wave in three dimensions.

We will generalize the D’Alembert solution to three dimensions.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 15 12. Januar 2015 13 / 42



The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions

We start by considering waves in three dimensions that have given
ICs, that is, we would like to solve the IVP:

Problem 15-2
To find the function u(x , y , z, t) that satisfies

PDE: utt = c2 (uxx + uyy + uzz) ,


−∞ < x <∞
−∞ < y <∞
−∞ < z <∞

ICs:

{
u(x , y , z,0) = φ(x , y , z)

ut (x , y , z,0) = ψ(x , y , z)
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions (cont.)

To solve problem 15-2, we first solve the simpler one (set φ = 0)

Problem 15-2a
To find the function u(x , y , z, t) that satisfies

PDE: vtt = c2∆v ,


−∞ < x <∞
−∞ < y <∞
−∞ < z <∞

ICs:

{
v(x , y , z,0) = 0
vt (x , y , z,0) = ψ(x , y , z)
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions (cont.)

Problem 15-2a can be solved by the Fourier transform and has the
solution

v(x , y , z, t) = tψ , (15.1)

where ψ is the average of the initial disturbance ψ over the sphere of
radius ct centered at (x , y , z); that is,

ψ =
1

4πc2t2

π∫
0

2π∫
0

ψ(x + ct sinϕ cos θ, y + ct sinϕ sin θ,

z + ct cos θ)(ct)2 sinϕdθdϕ.
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions (cont.)

The interpretation of (15.1) is that the initial disturbance ψ radiates
outward spherically (velocity c) at each point, so that after so
many seconds, the point (x , y , z) will be influenced by those initial
disturbances on a sphere (of radius ct) around that point.

The actual value of the solution (15.1) would most likely have to be
computed numerically on a computer for most initial disturbances.
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions (cont.)

Now, we consider the other half of problem 15-2; that is,

Problem 15-2b
To find the function w(x , y , z, t) that satisfies

PDE: wtt = c2∆w , (x , y , z) ∈ R3

ICs:

{
w(x , y , z,0) = φ(x , y , z)

wt (x , y , z,0) = 0
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions (cont.)

We can easily solve problem 15-2b: a famous theorem developed by
Stokes says all we have to do to solve this problem is change the ICs
to w = 0, wt = φ, and then differentiate this solution with respect to
time. In other words, we solve

Problem 15-2c
To find the function w̃(x , y , z, t) that satisfies

PDE: w̃tt = c2∆w̃ , (x , y , z) ∈ R3

ICs:

{
w̃(x , y , z,0) = 0
w̃t (x , y , z,0) = φ(x , y , z)
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Waves in Three Dimensions (cont.)

We get w̃ = tφ and then differentiate with respect to time. This
gives us the solution to problem 15-2c

w =
∂

∂t
[
tφ
]
. (15.2)

Combining (15.1) and (15.2) we have the solution to our problem
15-2. It’s just

u(x , y , z, t) = tψ +
∂

∂t
[
tφ
]
, (15.3)

where φ and ψ are the averages of the functions φ and ψ over the
sphere of radius ct centered at (x , y , z).
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Remarks
(15.3) is known as Poisson’s formula for the free-wave equation in
three dimensions. It is the generalization of the D’Alembert
formula.

The most important aspect of the Poisson formula is the fact that
the two integrals in φ and ψ are integrated over the surface of a
sphere.

When time is t = t1, the solution u at (x , y , z) depends only on the
initial disturbances φ and ψ on a sphere of radius ct1 around
(x , y , z).
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The Wave Equation in Three Dimensions (Free Space) Waves in Three Dimensions

Huygen’s principle

The wave disturbance originating from the initial-disturbance region
has a sharp trailing edge.

Remark
We know from the D’Alembert solution that the initial disturbance

u(x ,0) = φ(x)

ut (x ,0) = ψ(x)

in one dimension does not have a sharp trailing edge (since the
D’Alembert solution integrates ψ from (x − ct) to (x + ct).
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Two-Dimensional Wave Equation

Two-Dimensional Wave Equation

Consider the two-dimensional problem

Problem 15-3
To find the function u(x , y , t) that satisfies

PDE: utt = c2 (uxx + uyy ) , (x , y) ∈ R2

ICs:

{
u(x , y ,0) = φ(x , y)

ut (x , y ,0) = ψ(x , y)
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Two-Dimensional Wave Equation

Two-Dimensional Wave Equation (cont.)

To solve problem 15-3 we let the initial disturbances φ and ψ in the
three-dimensional problem depend on only two variables x and y .

Doing this, the three-dimensional formula

u = tψ +
∂

∂t
[
tφ
]

for u will describe cylindrical waves and, hence, give us the
solution for the two-dimensional problem.

This technique is called the method of descent.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 15 12. Januar 2015 24 / 42



Two-Dimensional Wave Equation

Two-Dimensional Wave Equation (cont.)

Carrying out the computations (which are by no means trivial), we
get

u(x , y , t) =
1

2πc


2π∫

0

ct∫
0

ψ(x ′, y ′)√
(ct)2 − r2

rdrdθ

+
∂

∂t

 1
2πc

2π∫
0

ct∫
0

φ(x ′, y ′)√
(ct)2 − r2

rdrdθ


, (15.4)

where x ′ = x + r cos θ and y ′ = y + r sin θ.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 15 12. Januar 2015 25 / 42



Two-Dimensional Wave Equation

Remarks
In (15.4) the two integrals of the ICs φ and ψ are integrated over
the interior of a circle (the key word is interior) with center at (x , y)
and radius ct .

If we analyze what this means in a manner similar t the
three-dimensional case, we see that initial disturbances give rise
to sharp leading waves, but not to sharp trailing waves.

Thus, Huygen’s principle doesn’t hold in two dimensions.
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The Finite Fourier Transforms (Sine and Cosine Transforms)

The Finite Fourier Transforms (Sine and Cosine Transforms)

Remarks
Earlier, we learned about the Fourier and Laplace transforms and
their applications for problems in free space (no boundaries).

Now, we show how to solve BVPs (with boundaries) by
transforming the bounded variables.
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The Finite Fourier Transforms (Sine and Cosine Transforms)

The finite sine and cosine transforms are defined by

S[f ] = Sn =
2
L

L∫
0

f (x) sin (nπx/L)dx , (finite sine transform)

n = 1,2, . . .

f (x) =
∞∑

n=1

Sn sin (nπx/L) (inverse sine transform)



C[f ] = Cn =
2
L

L∫
0

f (x) cos (nπx/L)dx , (finite cosine transform)

n = 0,1,2, . . .

f (x) =
C0

2
+
∞∑

n=1

Cn cos (nπx/L) (inverse cosine transform)
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Properties of the Transforms

If u(x , t) is a function of two variables, then (note we’re
transforming the x-variable)

S[u] = Sn(t) =
2
L

L∫
0

u(x , t) sin (nπx/L)dx

C[u] = Cn(t) =
2
L

L∫
0

u(x , t) cos (nπx/L)dx
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Properties of the Transforms (cont.)

1 S[ut ] =
dS[u]

dt

2 S[utt ] =
d2S[u]

dt2

3 S[uxx ] = −[nπ/L]2S[u] +
2nπ
L2

[
u(0, t) + (−1)n+1u(L, t)

]
4 C[uxx ] = −[nπ/L]2C[u]− 2

L
[
ux (0, t) + (−1)n+1ux (L, t)

]
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Finite Sine Transform

f (x) =
∞∑

n=1
Sn sin (nx) Sn = 2

π

π∫
0

f (x) sin (nx)dx

0 6 x 6 π n = 1,2, . . .

1. sin (mx)

{
1, n = m
0, n 6= m

2.
∞∑

n=1
an sin (nx) an

3. π − x
2
n

4. x
2
n

(−1)n+1
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Finite Sine Transform (cont.)

f (x) =
∞∑

n=1
Sn sin (nx) Sn = 2

π

π∫
0

f (x) sin (nx)dx

0 6 x 6 π n = 1,2, . . .

5. 1
2

nπ
[1− (−1)n]

6.

{
−x , x 6 a
π − x , x > a

2
n

cos (na), 0 < a < π

7.

{
(π − a)x , x 6 a
(π − x)a, x > a

2
n2 sin (na), 0 < a < π
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Finite Sine Transform (cont.)

f (x) =
∞∑

n=1
Sn sin (nx) Sn = 2

π

π∫
0

f (x) sin (nx)dx

0 6 x 6 π n = 1,2, . . .

8.
π

2
eax n

n2 + a2 [1− (−1)neaπ]

9.
sinh a(π − x)

sinh aπ
2n

π(n2 + a2)
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Finite Cosine Transform

f (x) = C0
2 +

∞∑
n=1

Cn cos (nx) Cn = 2
π

π∫
0

f (x) cos (nx)dx

0 6 x 6 π n = 0,1,2, . . .

1.
a0

2
+
∞∑

n=1
an cos (nx) an

2. f (π − x) (−1)n 2
π

Cn

3. 1

{
2, n = 0
0, n = 1,2, . . .

4. cos (mx), m = 1,2, . . .

{
1, n = m
0, n 6= m
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Finite Cosine Transform (cont.)

f (x) = C0
2 +

∞∑
n=1

Cn cos (nx) Cn = 2
π

π∫
0

f (x) cos (nx)dx

0 6 x 6 π n = 0,1,2, . . .

5. x

π, n = 0
2
πn2 [(−1)n − 1] , n = 1,2, . . .

6. x2

2π2/3, n = 0
4
n2 (−1)n, n = 1,2, . . .

7. − log(2 sin (x/2))

 0, n = 0
1
n
, n = 1,2, . . .
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The Finite Fourier Transforms (Sine and Cosine Transforms) Properties of the Finite Transforms

Finite Cosine Transform

f (x) = C0
2 +

∞∑
n=1

Cn cos (nx) Cn = 2
π

π∫
0

f (x) cos (nx)dx

0 6 x 6 π n = 0,1,2, . . .

8.
1
a

eax 2
π

[
(−1)neaπ − 1

n2 + a2

]

9.

{
1, 0 < x < a
−1, a < x < π


2
π

(2a− π), n = 0

4
nπ

sin (na), n = 1,2, . . .
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The Finite Fourier Transforms (Sine and Cosine Transforms) Solving Problems via Finite Transforms

Solving a Nonhomogeneous BVP via the Finite Sine Transform

Consider the nonhomogeneous wave equation

Problem 15-4
To find the function u(x , t) that satisfies

PDE: utt = uxx + sin (πx), 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = 0
u(1, t) = 0

0 < t <∞

ICs:

{
u(x ,0) = 1
ut (x ,0) = 0

0 6 x 6 1
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The Finite Fourier Transforms (Sine and Cosine Transforms) Solving Problems via Finite Transforms

Step 1. (Determine the transform)
Since the x-variable ranges from 0 to 1, we use a finite transform.

We could solve this problem with the Laplace transform by
transforming t (it would involve about the same level of difficulty as
the finite sine transform).
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The Finite Fourier Transforms (Sine and Cosine Transforms) Solving Problems via Finite Transforms

Step 2. (Carry out the transformation)
Transforming the PDE and ICs we get the new IVP for
Sn(t) = S[u]

Problem 15-4a

ODE:
d2Sn

dt2 + (nπ)2Sn =

{
1, n = 1
0, n = 2,3, . . .

,

ICs:


Sn(0) =

{
4/(nπ), n = 1,3, . . .

0, n = 2,4, . . .
dSn(0)

dt
= 0, n = 1,2, . . .
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The Finite Fourier Transforms (Sine and Cosine Transforms) Solving Problems via Finite Transforms

Step 3. (Solving the new IVP)
Solving the problem 15-4a we get

S1(t) =

(
4
π
− 1
π2

)
cos (πt) + (1/π)2

Sn(t) =


0, n = 2,4, . . .
4

nπ
cos (nπt), n = 3,5,7, . . .

Step 4. (Inverse transform)
Hence, the solution u(x , t) of the problem is

u(x , t) =

(
4
π
− 1
π2

)
cos (πt) sin[πx ] + (1/π)2 sin[πx ]

+
4
π

∞∑
n=1

1
2n + 1

cos [(2n + 1)πt ] sin [(2n + 1)πx ]
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The Finite Fourier Transforms (Sine and Cosine Transforms) Solving Problems via Finite Transforms

Remarks
In order to apply the finite sine or cosine transform, the BCs at
x = 0 and x = L must both be of the form

u(0, t) = f (t)
u(L, t) = g(t)

}
(use sine transform)

ux (0, t) = f (t)
ux (L, t) = g(t)

}
(use cosine transform)

In other words, the BCs

u(0, t) = f (t) and ux (L, t) = g(t)

wouldn’t work. Also BCs like ux (0, t) + hu(0, t) = 0 don’t apply.
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The Finite Fourier Transforms (Sine and Cosine Transforms) Solving Problems via Finite Transforms

Remarks (cont.)
In order to apply the finite sine and cosine transforms, the
equation shouldn’t contain first-order derivatives in x (since the
sine transform of the first derivative involves the cosine transform
and vice versa).

The finite sine- and cosine-transform method essentially resolves
all functions in the original problem (like utt , uxx , the ICs, BCs) into
a Fourier sine and cosine series, solves a sequence of problems
(ODE) for the Fourier coefficients, and then adds up the result.
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