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Purpose of Lesson

@ To find particular solutions of the Laplace equation in spherical
coordinates. To solve the interior and exterior Dirichlet problems
for the Laplace equation in 3D.

@ To derive the fundamental solution of the Laplace equation and
discuss how to solve with its help the Poisson equation
(nonhomogeneous Laplace equation).
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Spherical Harmonics

Laplace’s Equation in Spherical Coordinates
(Spherical Harmonics)

An important problem is to find the potential inside or outside a sphere

when the potential is given on the boundary. Consider, first, the interior
problem:

Problem 18-1
To find the function u(r, 6, ¢) that satisfies

PDE: (rPur), + gng [SiNGUs], + slse =0, 0 <r <1

sin® ¢
BC: u(1,0,¢)=9(0,¢), -n<b6<m, O0<o<n
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Spherical Harmonics

Remarks

@ A typical application of the problem 18-1 would be to find the
temperature inside a sphere when the temperature is specified on
the boundary.

@ Quite often g(0, ) has a specific form, so that it isn’t necessary to
solve the problem in its most general form.

@ We consider two important cases. One is the case when g(0, ¢) is
constant, and the other is when it depends only on the angle ¢
(the angle from the north pole).
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Special Case 1. (g(6, ) = constani)
Special Case 1. (g(0, ¢) = constant)

@ In this case, it is clear that the solution is independent of 6 and ¢,
and so Laplace’s equation reduces to the ODE

(rPuy), = 0. (18.1)
@ The general solution of (18.1) is
a
u(r) = P +b
@ In other words, constants and ¢ are the only potentials that

depend only on the radial distance from the origin. The potential 17
is called the Newtonian potential.
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Special Case 2. (9(0, ¢) depends only on ¢)
Special Case 2. (g(6, ¢) depends only on ¢)

In this case, the Dirichlet problem takes the form

Problem 18-1a
To find the function u(r, 6, ¢) that satisfies

PDE: (rPur), + gng [singug], =0, 0<r<1

BC: u(1,0,0) = g(o), 0<p<

© Daria Apushkinskaya () PDE and BVP  lecture 18 26. Januar 2015

6/22



Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Step 1. (Separation of variables)
@ We look for solutions of the form
u(r,¢) = R(r)®(¢)
and arrive at the two ODEs

rPR"+2rR'—n(n+1)R=0  (Euler’s equation)
[sing®’] + n(n+1)sing® = 0 (Legendre’s equation)

@ The separation constant is chosen to be n(n+ 1) for convenience;
later we will see why this choice is made.
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Step 2. (Solving the Euler equation)

@ We solve Euler’s equation by substituting R(r) = r® in the
equation and solving for «.. Doing this, we get two values

n

““Y =+

@ Hence, Euler’'s equation has the general solution

R(r) = ar" + br= (1)
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Step 3. (Solving the Legendre equation)

@ Making the substitution x = cos ¢ we get the new Legendre

equation
a?o do
1—x2) 5 — 2x—— 1) = —-1<x<1.
( X)dx2 xdx+n(n+) 0, 1<x<
The idea here is to solve for ®(x) and then substitute x = cos ¢ in
the solution.

@ Legendre’s equation is a linear second-order ODE with variable
coefficients. One of the difficulties in this equation is that the
coefficient (1 — x2) is zero at the ends of the interval [-1, 1].
Equations like this are called singular differential equations and
are often solved by the method of Frobenius.
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Gzl Cose o il pldopais e o)
Step 3. (cont.)

@ The only bounded solutions of Legendre’s equation occur when
n=0,1,2,... and these solutions are polynomials Pp(x),
—1 < x < 1 (Legendre polynomials)

n=0 Po(X):1

n=1 Pi(x)=x
n=2 Py(x)= %(3x2—1)
n=38 Ps(x)= %(5X2 - 3x)

1 an
= g (1

n  Pp(x) (Rodrigues’ formula)
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Legendre Polynomials Pp(x)
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Step 4. (Combination)
@ We now have that the bounded solutions of
rPR"+2rR —n(n+1)R=0 0<r<1
[singp®] +n(n+1)singd =0 —7<od<7
are

R(r) = ar”
®(¢) = aPn(cos ¢)

@ Therefore,

u(r,¢) = i anr" Pp(cos ¢). (18.2)

n=0
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Step 5. (Substituting into BC)

@ Substituting solution (18.2) into the BC gives

> " anPn(cos ¢) = g(¢) (18.3)

n=0

@ Observe that the Legendre polynomials are orthogonal on [—1,1].
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Gzl Cose o il pldopais e o)
Step 5. (cont.)

So, if we multiply each side of (18.3) by P (cos ¢) sin ¢ and integrate ¢
from 0 to 7, we get

/ 9(¢)Pm(cos ¢)singdp = > ap / P,(cos ¢)Pm(cos ¢) sin pdp
0 n=0

0

o 1
= Zan/Pn(x)Pm(x)dx
n=0 4

0, n#m
= 2am

2m+1’

m=n
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Step 5. (cont.)

@ Hence

on+1 [ .
an= 2" / 9(6)Pa(c08 6) sin b0l
0

and the solution to our Dirichlet problem 18-1a is

u(r,¢) = anr"Py(cos ¢)
n=0

© Daria Apushkinskaya () PDE and BVP  lecture 18 26. Januar 2015 15/22



Spherical Harmonics Special Case 2. (9(0, ¢) depends only on ¢)

Remarks
@ The solution of the exterior Dirichlet problem

PDE: Au=0, 1<r<oo

BC: u(1,0,9)=9(¢), 0<o<m

is
o) bn
U(r, (25) == Z mPn(COS (25),
n=0
where i
2 1 .
b= 2" [ 9(6)Po(cos ) sind,
0
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Spherical Harmonics Special Case 2. (9(6, ¢) depends only on ¢)

Remarks (cont.)

@ For example, the BC g(¢) = 3 would yield for the solution of the
exterior problem

3
U(r7¢) = 7

Note that in this problem (in 3D!l!), the solution goes to zero, while
in two dimensions, the exterior solution with constant BC was itself
a constant.

v
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Fundamental Solution

Fundamental Solution

Problem 18-2
To find a function u(x) that satisfies

Au=0 x eR”

@ We attempt to find a solution u of Laplace’s equation in R”, having
the form
u(x) = v(r),

where r = |x| = /X2 + x2 + - - + X3.
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Fundamental Solution

@ ltis clear that Au = 0 if and only if that

n—1

v'(r) + v/(r) =0.

@ If r > 0 we have

ainr+»b (n=2)
vin=4 a
rn—2

+b (n=>=3),

where a and b are constants.
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Fundamental Solution

The above consideration motivate the following

Definition
The function
1 In|x| (n=2)
21 ’

1 1
n(n—2)w(n) |x|"—2

o(x) =

defined for x € R", x # 0, is the fundamental solution of Laplace’s
equation.

@ w(n) denotes the volume of the unit ball in R".
C

‘X|n71 ’

° |Do(x)| < |D?o(x)| < (x#0)

x|
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Fundamental Solution

Theorem (Solving Poisson’s equation)

Let f: R” — R be twice contionuous differentiable with compact
support, and let u satisfy

u(x) = / (x — y)(y)dy

RI‘I

o= [Inx=yitdy  (n=2)

R2
1 f(y)
(- 2)w(n)R[ Xy =9

Then u e C?(R")and —Au=f inR".
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Fundamental Solution

Remarks
@ We cannot just compute

Au(x) = /AXCD(X —y)f(y)dy =0.
R’A

@ Indeed, D?®(x — y) is not summable near the singularity at y = x,
and so the differentiation under the integral sign is unjustified (and
incorrect).

@ We must proceed more carefully in calculating Au.
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