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Purpose of Lesson

@ To show how a nonhomogeneous Dirichlet problem can be solved
by the Green’s function approach (the impulse-responce function).

@ To derive Green’s functions for a half-space and for a ball.

@ To show how a PDE can be changed to a system of algebraic
equations by replacing the partial derivatives in the differential
equation with their finite-difference approximations. The system of
algebraic equations can then be solved numerically by an iterative
process in order to obtain an approximate solution to the PDE.
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A Nonhomogeneous Dirichlet Problem (Green’s Function)

A Nonhomogeneous Dirichlet Problem (Green’s
Function)

Problem 19-1
To find a function u(x) that satisfies

PDE: —Au=f xecUCcCR" U-—open,bounded, oU c C'

BC: u=g, x e oU

We propose to obtain a general representation formula for the solution
of Problem 19-1.
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Derivation of Green’s function

@ Fix x € U, choose ¢ > 0 so small that B.(x) C U.
@ Applying Green’s formula

/[uAv — VAu]dx = / [ug; - vgﬂ as
Q o9

on the region U. := U — B-(x) to u(y) and ¢(y — x) we get
Jlww)aety - x - oy - x)au(y)ldy
Ue

— / [u(y)g‘r'”(y_x)_uy—x)‘;i dS(y)

oU:
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Derivation of Green’s function (cont.)

@ We observe that
@ Ad(y—x)=0fory # x;

Q
ou n—1 _
| [ oy =05 0d8)] < C="" max o] = o1)
9B (x)
ase — 0;
° 0P
| Gy -xdsmn = f uyesy) - ui)
0B (x) 8B (x)
ase — 0;
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Derivation of Green’s function (cont.)

@ Hence our sending ¢ — 0 yields the formula:

ut) = [ oty =050 - un oy - )] ds)

ou

- / ®(y — x)Au(y)dy
U

The above identity is valid for any point x € U and any function
ue C?U)
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Derivation of Green’s function (cont.)

) = [ oty =050 - un oty - 0] ds)
ou (19.1)
- [ oW - x)au)ay

U

Remarks
@ If we apply formula (19.1) to problem 19-1, we see that the normal

L u ,
derivative an along dU is unknown to us.

@ We must somehow modify (19.1) to remove this term.
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Derivation of Green’s function (cont.)

The idea is now to introduce for fixed x a corrector function ¢* = ¢*(y),

solving the BVP:

Problem 19-2
To find a function ¢*(y) that satisfies

PDE:  A¢* =0, yeu

BC: ¢* =o(y —x), yeou
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Derivation of Green’s function (cont.)

Applying Green’s formula once more, we compute

- [ewsuoy = [ [un) ) - 5050 ds)
(9] ou

— [ a5 01 = 0y = 21501 as)

ou

We introduce next this

Definition
Green’s function for the region U is

G(x,y) =0y —x)—¢"(y) (x,yeU, x#y).
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Adopting this terminilogy, we find from (19.1) and the above identity for
¢* the formula

u() = - [ uy) 52 (x.0)aS) - [ Glrysudy. (x e U) (192)
ou u

where 9G
%(Xd’) =n(y) - DyG(x,y)

is the outer normal derivative of G with respect to the variable y.
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A Nonhomogeneous Dirichlet Problem (Green’s Function) Green’s Function

Theorem (Representation formula using Green’s function)

If u € C?(U) solves problem 19-2, then

/ 9(y) == (x,y)dS(y) + / f(y)G(x,y)dy (x € U)
au U

@ To construct Green’s function G for the given domain U is in
general a difficult matter, and can be done only when U has
simple geometry

@ We will build Green’s functions for two regions with simple
geometry, namely the half-space R and the unit ball B (0).
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Green’s Function

Theorem (Representation formula using Green'’s function)
If u e C?(U) solves the problem
PDE: —Au=f xecUCcCR" U-—open,bounded, U e C'
BC: u=g, xeou

then

ux) = - [ an T2 tx.0)as) + [ )Gy (x < V)
ou U

where

G(x,y) =o(y —x)—6"(y) (x,yeU, x#y).

© Daria Apushkinskaya (UdS) PDE and BVP  lecture 19 2. Februar 2015

12/34



Green’s Function for a Half-Space
Green’s Function for a Half-Space

@ We set for x,y € R

¢X(y) = d)(y—)?) :¢(y1 _X17-~7}/n—1 _Xn—17}/n+xn)-

The idea is that the corrector ¢* is built from ¢ by ,reflecting the
singularity“ from x € R to X ¢ R”.
@ If y € OR' then
P*(y) = ®(y — x),

and thus
A¢* =0 inR?
¢ =d(y —x) ondR]

as required.
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Green’s Function for a Half-Space
Green’s Function for a Half-Space (cont.)

@ Therefore, Green’s function for the half-space R’ is

Gx,y)=d(y —x)—d(y - %), (x,yeRl, x#y)
@ It is evident that

oyn"" Yn AYyn
-1 }/n—Xni}/n‘f‘Xn
nw(n) [ly —x|" |y —X|"

@ So, if y € OR"

oG 0G _ —2Xp 1

a0V = oy, N = oy ix e
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Green’s Function for a Half-Space
Green’s function for a half-space (cont.)

Suppose now u solves the BVP

Problem 19-3
To find a function u(x) that satisfies
PDE: Au=0, x e R

BC: u=g, x € ORY}

We expect
2Xn 9ly) n
= R 19.
)= ooy | oy CERD (e
ORN

to be a representation formula for our solution.
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Green’s Function for a Half-Space
Green’s Function for a Half-Space (cont.)

Remark
We must check directly that formula (19.3) provides us with a solution
of the BVP 19-3, i.e., we must check that

ue C3R7),

and
Au=0 inR7,

and
lim u(x) = g(x°) for each point x° € R
Rﬂ’rax—mo

© Daria Apushkinskaya (UdS) PDE and BVP  lecture 19 2. Februar 2015 16/34



Green’s Function for a Ball

We solve problem for the unit ball, i.e.,

U=Bi(0)={xeR": |x| <1}
@ We set for x,y € B;(0)
X

P(y) = (xlly-%)), k= xE

Again, the idea is to ,invert the singularity” from x € B4(0) to
X ¢ B1(0).
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Green’s Function for a Ball (cont.)

@ Assume for the moment n > 3.
@ The mapping y — ®(y — X) is harmonic for y #
@ Thus y — [x]27"®(y — X) is also harmonic for y # X
Therefore, ¢*(y) := ®(|x|(y — X) is harmonic in B;(0).
@ If y € 0B1(0) and x # 0, then

x2ly — %P = |xP (|y|2 -

=|xP-2y x+1=|x—y

2y-x | 1
x|2 0 |x|?

Thus, (|x|ly — X|)~("=2) = |x — y|~("~2), Consequently
¢*(y) =o(y —x) (y €9B4(0))

as required.
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Green’s Function Green’s Function for a Ball

Green’s Function for a Ball (cont.)

@ Therefore, Green’s function for the unit ball B;(0) is
G(x,y) = ®(y —x) = ®(Ix|[(y = %) (x,¥ € B1(0),x # y)

@ If y € 0B1(0) then

oG . 6G
%(va) — ;ylayl(xay)

—1 1 4
= e X =y >y <(J/i —x;) — yilx? + Xi>
i=

-1 1—|x?
nw(n) [x = y|™
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Green’s Function for a Ball (cont.)

Suppose now u solves the BVP

Problem 19-4
To find a function u(x) that satisfies

PDE: Au=0, x € By(0)

BC: u=g, x € 0B4(0)

We expect

_1-xP 9y)
0B4(0)

to be a representation formula for our solution.
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Numerical and Approximate Methods

Chapter 5. Numerical and Approximate Methods

@ So far, we have studied several techniques for solving linear
PDEs. However, most of the equations we’ve attackes were
reasonably simple, had reasonably simple BCs, and had
reasonably shaped domains.

@ But many problems cannot be simplified to fit this general mold
and must be solved by numerical approximations.

@ To begin, we introduce the idea of finite differences. We then show
how to use these finite differences to solve a Dirichlet problem
inside a square.
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Finite-Difference Approximations
Finite-Difference Approximations

@ First, we recall the Taylor series expansion of a function f(x)

f//(X)

2
o h®+...

f(x + h) = f(x) + F(x)h +

@ If we truncate this series after two terms, we have the

approximation
f(x + h) = f(x)+ f'(x)h

Hence, we can solve for f/(x)

#(x) f(x + hlz — f(x)

which is called the forward-difference approximation to the first
derivative f'(x).

1
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Finite-Difference Approximations
Finite-Difference Approximations (cont.)

@ We could also replace h by —h in the Taylor series and arrive at
the backward-difference approximation

or by subtracting
f(x —h) = f(x) - f'(x)h

from
f(x + h) = f(x)+ f'(x)h

we can obtain the central-difference approximation

f(x) = — [f(x + h) — f(x — h)].

1
aplf
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Finite-Difference Approximations
Finite-Difference Approximations (cont.)

@ By retaining another term in the Taylor series, this type of analysis
can be extended to arrive at the central-difference approximation
of the second derivative f”(x)

£(x) = % [F(x + h) — 26(x) + f(x — h)].
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Numerical and Approximate Methods Finite-Difference Approximations

@ We now extend the finite-difference approximations to partial
derivatives. If we begin with the Taylor series expansion in two
variables

2

U(X+ h7y) = U(Xay) =+ UX(Xay)h+ UXX(va)E + .
h2

u(x —h,y)=u(x,y) — ux(x,y)h+ uxx(x,y)E — ...

we can deduce the following:

ux+hy)—u(x,y)

Uy (X, y) = i (Forward difference)
(X, Y) = 5 [U(x + .y) = 20(x,y) + u(x — . )]
y(x,y) = L [00x,y + K) — u(x,y)]

Uy (x,¥) = 5 1006,y + K) —20(x,y) + u(x,y — K)].
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Numerical and Approximate Methods Finite-Difference Approximations

Remarks

@ Which approximation of partial derivatives is used (forward,
central, or backward) depends on the problem.

@ We will consider the central-difference approximation.
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

Dirichlet Problem Solved by the Finite-Difference
Method

To illustrate how to use these finite-difference approximations, we
consider the simple Dirichlet problem.

Problem19-5
To find a function u(x, y) that satisfies
BCs: u(x,y)=20 On the top and sides of the square
© | u(x,0)=sin(rx) 0< x<1

We begin with the drawing the grid system on the xy-plane.
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

Grid lines for the Dirichlet problem inside a sauare

Uistj

Uij1

A Um1

i changes E

j changes ———»
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

It is convenient to use the following notation:

u(x,y) = ujj
u(x,y + k) = U1
U(X,y — k) = U,',1,j
u(x + h,y) = ujji
u(x —h,y) = ujj1
1
ux(x,y) = ﬁ(uuﬂ - Ui,j—1)
1
uy(x,y) = ﬁ(ui—H,j — Uj—1,)
1
Uxx(X,y) = ﬁ(ui,m —2U;j + Ujj_1)

1
Uy (x,y) = p(uiﬂ,/ — 2Ujj + Uj-1j)
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

@ Our strategy for solving the Dirichlet problem 17-3 is to replace the
partial derivatives in Laplace’s equation

Uxx+ Uyy = 0

by their finite-difference approximations.
@ Using the compact notation u; ;, we have the following difference
equation:

1 1
AU = 45 (Uit = U1+ Ujj1) + 5 (Uit — 205 + Uj-17) = 0.
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

@ By letting the two discretization sizes h and k be the same,
Laplace’s equation is replaced by

(Uis1j+ Uit + Uijr1 + Ujj—1 — 4Ujj) = 0

or solving for u;

]
ujj = 7 (U,’+17/’ + U1+ Ujji1+ U,"/'_1) (19.5)

Remarks
@ u;; stands for the solution at the interior grid points.

@ Equation (19.5) says that we can approximate the solution u; ; by
averaging the solution at four neighboring grid points.
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Dirichlet Problem Solved by the Finite-Difference Method
Numerical Algorithm for Solving the Dirichlet Problem
(Liebmann’s Method)

Seek the solution u; ; at the interior grid points by setting them
equal to the average of all the BCs (reasonable start).

Systematically run over al the interior grid points, replacing the old
estimates by the average of its four neighbors.

Remarks

@ It doesn’'t make much difference in what order this process is
carried out, but, generally, it si done in a row by row (or colunm by
colunm) manner.

@ After a few iterations, this process will converge to an approximate
solution of the problem.

© The rate of convergence is generally slow but can be speeded up
in a number of ways.

v
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

Remarks
@ If we made our discretization sizes h and k smaller (so that we
had more grid points), the analysis would be similar except that
the system of obtained algebraic equations would be larger.

@ In general, the number of equations will be equal to the number of
interior grid points.

@ To solve the Neumann problem where there are derivatives on the
boundary we must also replace these derivatives by some finite
difference approximation.

@ We can also solve equations with variable coefiicients and
nonhomogeneous equations by the finite-difference method.
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Numerical and Approximate Methods Dirichlet Problem Solved by the Finite-Difference Method

Remarks (cont.)
@ If the domain of the problem is an irregularly shaped region, we
can overlay the region with grid lines and then approximate the
solution at nearby grid points by interpolation the BCs.

BCs given on curve

q
I
I
I
i

L
|
1L

| S|
AN

I~ [C] = New BC found by interpolation of BC on curv:
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