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Purpose of Lesson
To explain the basic philosophy of Monte Carlo methods and
suggest how they can be used to solve various problems.

To show how random games (Monte Carlo methods) can be
designed whose outcomes approximate solutions to differential
equations. A specific game (tour du wino) is described whose
outcome is the finite-difference approximation to a Dirichlet
problem inside a square. The game is extended to include
solutions to other problems as well.
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Monte Carlo Methods (an Introduction)

Monte Carlo Methods (an Introduction)

The basic idea here is that games of chance can be played
(generally on a computer) whose outcomes approximate solutions
to real-word problems.

First of all Monte Carlo methods are procedures for solving
nonprobabilistic-type problems (problems whose outcome does
not depend on chance) by probabilistic-type methods (methods
whose outcome depends on chance).

The general philosophy of Monte-Carlo methods is illustrated on
the next page.
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Monte Carlo Methods (an Introduction)

	  
Probabilistic	  game	   Deterministic	  problem	  

The	  outcome	  of	  the	  game	  	  

€ 

ˆ p 	  
	  
(Like	  the	  fraction	  of	  heads	  in	  tossing	  
a	  coin,	  throwing	  darts,	  and	  so	  forth)	  

The	  answer	  to	  the	  problem	  is	  

€ 

p 	  
	  
(Like	  evaluation	  an	  integral,	  solving	  
a	  PDE,	  and	  so	  forth)	  

Outcome	  =	  

€ 

ˆ p 	  	   Answer	  	  =	  	  

€ 

p 	  	  	  	  
Approximation	  
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Monte Carlo Methods (an Introduction) Evaluating an Integral

Evaluating an Integral

To illustrate the method, suppose we wanted to evaluate the
integral

I =

bˆ

a

f (x)dx

(a nonprobabilistic problem).
To use the Monte Carlo method, we would devise a game of
chance whose outcome was the value of the integral (or
approximates the integral).
There are, of course, many games that we could devise; the
actual game we used would depend on the accuracy of the
approximation, simplicity of the game, and so on.
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Monte Carlo Methods (an Introduction) Evaluating an Integral

Evaluating an Integral (cont.)

An obvious game to evaluate the integral would be throwing darts
at the rectangle

R = {(x , y) : a 6 x 6 b,0 6 y 6 max f (x)} .

It’s fairly obvious that if we randomly toss 100 or so darts at the
rectangle R enclosing the graph, then the fraction of darts hitting
below the curve times the area of R will estimate the value of the
integral.

Hence, our outcome of the game

Î = [fraction of tosses under f (x)]× (area of R)

is used to estimate the true value of the integral I.
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Monte Carlo Methods (an Introduction) Evaluating an Integral

Evaluating an Integral (cont.)

To carry out the actual computation on a computer, we would have
to generate the sequence of random points in some way (we’ll
discuss this shortly) and have the computer play the dart tossing
game.

Let us assume for the time being that we have a sequence of
random points. The flow diagram on the next page illustrates how
the computer would attack this problem. (See flow diagram to

evaluate
b́

a
f (x)dx by the Monte Carlo method (100 tosses)).
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Monte Carlo Methods (an Introduction) Evaluating an Integral

	  

Yes	  

Set	  
Under=0	  

I=1	  

	  Generate	  two	  random	  numbers	  

€ 

0 ≤ r1≤1
0 ≤ r2 ≤1	  

Compute	  

€ 

x = a + (b − a)r1
y = Mr2

M =max f (x) 	  

(gives	  a	  random	  point	  (x,y)	  in	  the	  
rectangle	  R)	  

	  

Is	  	  

€ 

y < f (x)

€ 

?	  

No	  

Start	  

I=100	  ?	  

Yes	  
Integral=[Under/100]M(b-a)	  

No	  I=I+1	  

Under=Under+1	  

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 21 9. Februar 2015 8 / 29



Monte Carlo Methods (an Introduction) Random Numbers

Random Numbers

Before going on to apply this technique to the solution of PDEs,
we discuss the important topic of random numbers.

In the integral just considered, it was necessary to generate a
sequence of random points Pi = (xi , yi) that fell inside rectangle
R. In other words, the x-coordinate would have to be a random
number in the interval [a,b], while yi must be in [0,M].
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Monte Carlo Methods (an Introduction) Random Numbers

Random Numbers (cont.)

To find random numbers inside specific intervals, we start with a
basic sequence of random numbers ri (uniformly distributed)
inside [0,1].

It’s obvious then that if we want a random number xi inside [a,b],
we just compute

xi = a + (b − a)ri

So everything comes down to the question, how do we generate a
sequence of random numbers {ri , i = 1,2, . . . } uniformly
distributed in [0,1].
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Monte Carlo Methods (an Introduction) Random Numbers

Residue Algorithm for Generating Random Numbers

To generate a sequence of random integers (between 0 and P), we
use the residue algorithm.

1 Pick the first random integer any way you like between 0 and P (P
was picked in advance).

2 Multiply this random integer by some fixed integer M (picked in
advance).

3 Add to that product another fixed integer K (picked in advance).

4 Divide the resulting sum by P and pick the remainder as the new
random integer. Now go back to step 2 and repeat steps 2-4 until
you have enough random integers.
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Monte Carlo Methods (an Introduction) Random Numbers

This residue algorithm can be written as

ri+1 ≡ (Mr1 + K )mod P i = 0,1,2, . . .

which says, if we are given a random integer ri , then to compute a
new one ri+1, we multiply by M, add K , divide by P, and pick the
remainder.
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Monte Carlo Methods (an Introduction) Random Numbers

Remarks
If we choose, for example, P = 100 in our random-number
generator, the remainders will be one of the integers
0,1,2, . . . ,99, and, hence, our entire process will start repeating
before long.

In fact, our random numbers might be

15, 71, 43, 7, 43, 7, 43, 7, (Cycle of two numbers)

and, hence, our method is no good.

The ideal situation is to generate the entire residue class
{0,1,2, . . . ,99} in a random fashion before starting to repeat.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 21 9. Februar 2015 13 / 29



Monte Carlo Methods (an Introduction) Random Numbers

Remarks (cont.)
It can be proven mathematically that if the numbers M, K , and P
are chosen according to certain rules, then no matter how we pick
the first random number r0, the algorithm will generate the entire
residue class.

So, if we pick P very large (like 240), we are assured that (for
practical purposes) the process will never repeat.

It is possible to generate random samples from various statistical
distributions other than the uniform distribution f (x) = 1,
0 < x < 1 (the usual random-generator).

Computer programs are available to generate random samples
from the binomial, gamma, normal, and many other distributions.
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Monte Carlo Solution of PDEs

Monte Carlo Solution of PDEs

We show how we can design a game to approximate solution of the
Dirichlet problem:

Problem 21-1
To find a function u(x , y) that satisfies

PDE: uxx + uyy = 0, 0 < x < 1, 0 < y < 1

BC: u(x , y) = g(x , y) =


1,
0,

On the top of the square
On the sides and
bottom of the square

To illustrate the Monte Carlo method in this problem, we introduce a
game called tour du wino. To play it, we need a board on which grid
lines are drown (see next page).
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Monte Carlo Solution of PDEs

	   p1	  
	  

=	  end	  points	  pi	  

=	  interior	  grid	  points	  

Board	  for	  tour	  du	  wino	  
p2	  
	  

p3	  
	  

p4	  
	  

p5	  
	  

p6	  
	  

p12	  
	  

p11	  
	  

p10	  
	  

p9	  
	  

p8	  
	  

p7	  
	  

C	  
	  

B	  
	  

E	  
	  

A	  
	  

D	  

	  

A	  
	  

=	  starting	  points	  for	  game	  

gi	  	  =	  reward	  for	  ending	  at	  pi	  
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Monte Carlo Solution of PDEs How Tour du Wino is Played

How Tour du Wino is Played

1. The wino starts from an arbitrary point (point A in our case).

2. At each stage of the game, the wino staggers off randomly to one
of the four neighboring points. (In our case, the neighbors of A are
B, C, D and E , and the probability of going to each of these
neighbors is 1/4.

3. After arriving ata neighboring point, the wino continues this
process wandering from point to point until eventually hitting a
boundary point pj . He then stops, and we record that point pi . This
completes one random walk.
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Monte Carlo Solution of PDEs How Tour du Wino is Played

How Tour du Wino is Played (cont.)

4. We repeat steps 1-3 until many random walks are completed. We
now compute the fraction of times the wino had ended up at each
of the boundary points pi .

5. Suppose the wino receives a reward gi (gi is the value of the BC
at pi ) if he ends his walk at the boundary point pi , and suppose
that the goal of the game is to compute his average reward R(A)
for all this walks. The average reward is

R(A) = g1PA(p1) + g2PA(p2) + · · ·+ g12PA(p12)

The game is completed with the determination of R(A).
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Monte Carlo Solution of PDEs How Tour du Wino is Played

Probability of Random Walk Ending at pi

Boundary point pi PA(pi) = fraction of times gi = reward for
the wino ends at pi ending at pi

1 0.04 1
2 0.15 1
3 0.03 1
4 0.06 0
5 0.17 0
6 0.05 0
7 0.06 0
8 0.15 0
9 0.03 0

10 0.06 0
11 0.16 0
12 0.04 0
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Monte Carlo Solution of PDEs Reason for Playing Tour du Wino

Reason for Playing Tour du Wino

It turns out that the average reward is the approximate solution to our
Dirichlet problem at Point A. This interesting observation is based on
two facts.

1 Suppose the wino started at a point A that was on the boundary of
the square. Each resulting random walk ends immediately at that
point, and the wino collects the amount gi . Thus, his average
reward for starting from a boundary point is also gi .

2 Now suppose the wino starts from an interior point. Then, the
average reward R(A) is clearly the average of the four average
rewards of the four neighbors

R(A) =
1
4

[R(B) + R(C) + R(D) + R(E)]
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Monte Carlo Solution of PDEs Reason for Playing Tour du Wino

We ask why the wino’s average reward R(A) approximates the
solution of the Dirichlet problem at A. We have seen that R(A)
satisfies two equations

R(A) =
1
4

[R(B) + R(C) + R(D) + R(E)] (A an interior point)

R(A) = gi (A a boundary point)

If we let gi be the value of the boundary function g(x , y) at the
boundary point pi , then our two equations are exactly the two
equations we arrived at when we solved the Dirichlet problem by
the finite-difference method.
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Monte Carlo Solution of PDEs Reason for Playing Tour du Wino

That is, R(A) corresponds to ui,j in the finite-difference equations

ui,j =
1
4
(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
(i , j) an interior point

ui,j = gi,j gi,j the solution at a boundary point (i , j)

Hence, R(A) will approximate the true solution of the PDE at A.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 21 9. Februar 2015 22 / 29



Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

Solution of Laplace’s Equation by the Monte Carlo
Method

These rules give the solution at one point inside the square.

1. Generate several random walks starting at some specific point A
and ending once you hit a boundary point. Keep track of how
many times you hit each boundary point.

2. After completing the walks, compute the fraction of times you have
ended at each point pi . Call these fractions PA(pi).

3. Compute the approximate solution u(A) from the formula

u(A) = g1PA(p1) + g2PA(p2) + · · ·+ gNPA(pN)

where gi is the value of the function at pi and N is the number of
boundary points.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 21 9. Februar 2015 23 / 29



Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

Solution to a Dirichlet Problem with Variable
Coefficients

The game tour du wino can be modified to solve more complicated
problems, as in the following example.

Problem 21-2
To find a function u(x , y) that satisfies

PDE: uxx + (sin x) uyy = 0, 0 < x < π, 0 < y < π

BC: u(x , y) = g(x , y) on the boundary of the square
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Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

To solve Problem 21-2, we replace uxx , uyy and sin x by

uxx =
[
ui,j+1 − 2ui,j + ui,j−1

]
/h2

uyy =
[
ui+1,j − 2ui,j + ui−1,j

]
/k2

sin x = sin xj

and plug them into the PDE.

Making these substitutions and solving for ui,j gives

ui,j =
ui,j+1 + ui,j−1 + sin xj

(
ui+1,j + ui−1,j

)
2(1 + sin xj)

(21.1)
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Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

Look carefully at (21.1). The coefficients of ui+1,j , ui−1,j , ui,j+1, and
ui,j−1 are positive and sum to one. In other words, ui,j is a
weighted average of the solutions at the four neighboring points.

Hence, we modify our game so that the wino doesn’t stagger off to
each neighbor with probability 1/4, but, rather, with a probability
equal to the coefficients of the respective term.
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Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

In other words, if the wino is at the point (i , j), he then goes to the
point:

(i , j + 1) with probability
1

2(1 + sin xJ)

(i , j − 1) with probability
1

2(1 + sin xJ)

(i + 1, j) with probability
sin xj

2(1 + sin xJ)

(i − 1, j) with probability
sin xj

2(1 + sin xJ)

Other than this slight modification, the game is exactly the same
as before.
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Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

Remarks
Observe that once the fractions PA(pi) (the fraction of times the
wino ends at pi ) are computed, we can then find the solution u(A)
for any other boundary conditions gi just by plugging the PA(pi)
into the formula

u(A) = g1PA(p1) + g2PA(p2) + · · ·+ gNPA(pN).

That is, we don’t have to recompute new random walks.

In many cases, a researcher wants to find the solution of a PDE at
only one point. If the boundary is fairly complicated and if the PDE
involves 3 or 4 dimensions, then Monte Carlo methods may come
to rescue.
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Monte Carlo Solution of PDEs Solution of Laplace’s Equation by the Monte Carlo Method

Remarks (cont.)
In fact, Monte Carlo methods were originally developed to study
difficult neutron-diffusion problems that were impossible to solve
analytically.
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