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Purpose of Lesson

@ To show how the Fourier transform changes differentiation to
multiplication, so how dfferential equations change into algebraic
ones.

@ To define the Laplace and inverse Laplace transforms, to illustrate
several useful properties of the Laplace transform and to show
how these properties can be used to solve PDEs.
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Solution an Initial-Value Problem

Consider the heat flow in an infinite rod where the initial temperature is
u(x,0) = ¢(x). In other words, we look for the solution to the
initial-value problem (IVP), sometimes called a Cauchy problem.

Problem 8-1
To find the function u(x, t) that satisfies
PDE:  u; = aPuy, —0 < X <00, 0<t<oo
IC: u(x,0) = ¢(x), —00 < X < 00

There are three basic steps in solving this problem.
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Solution an Initial-Value Problem

Step 1. (Transformation)

@ Since the space variable x ranges from —co to oo, we take the
Fourier transform of the PDE and IC with respect to x.

Flu(x, )] =: U, t) = U(t)
Flux, 0] = 2 Flu(x, 0] = 2 0(1)

Fluxx(x, 1)] = —527'"[U(X, B = €2U(1)
Flu(x,0)] = U(0)
)

Flop(x)] =: ®(&) (P is the Fourier transform of ¢)
@ Substituting all these terms into problem 8-1, we get
. d 262
ODE: EU( ) = —acg=U(t)
: (8.1)
IC U(0) = o(¢)

© Daria Apushkinskaya (UdS) PDE and BVP  lecture 8 27. November 2014 4/21



Solution an Initial-Value Problem

Step 2. (Solving the transformed problem)

@ Remember the new variable ¢ is nothing more than a constant in
this differential equation, so the solution to problem (8.1) is

U(t) = d(&)e ¢t

Step 3. (Finding the inverse transform)

@ We merely compute

u(x, t) = F7 UG 1)] = F1 o) ]
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Solution an Initial-Value Problem

Step 3. (Finding the inverse transform)
@ Due to the convolution property we can write
u(x, t) = " [ o(§)e <]
= FeE]« F T e

—¢(x)*[ ! e—x2/<4a20]

a2t
1 7 2 2
— —(x=£)%/(4at)
= e d
= [ 8 ¢

@ Therefore,

u(x,t) =

1 T 2 2
—(x=£)7/(4a%t)
e d€|.
2ax/wt/¢(£) ¢
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Solution an Initial-Value Problem

Remarks

@ The major drawback of the Fourier transform is that all functions
can not be transformed;

@ Only functions that damp to zero sufficiently fast as |x| — oo have
transforms.

@ The Fourier transform could not be used to transform the time
variable in problem 8-1, since 0 < t < oo.
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Laplace transforms:

L[f] = / f(t)e Stdt (Laplace transform)
c+ioco
L7F] = f(t) = / F(s)eS'ds (inverse Laplace transform)
c—ioco
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The Laplace Transform

Remarks
@ The Laplace transform has one major advantage over the Fourier
transform in that the damping factor e=! in the integrand allows
us to transform a wider class of functions.

@ The factor ¥ in the Fourier transform doesn’t do any damping,
since its absolute value is one.
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The Laplace Transform

Sufficient Conditions to Insure the Existence of a
Laplace Transform

If

@ fis piecewise continuous on the intervall 0 < t < A for any
positive A;

@ we can find constants M and a such that |f(t)| < Me? for all
values of t greater than some number T

then the Laplace transform
C[f] = F(s) = / f(t)e~Stdt
0

exists for s > a.
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Properties of the Laplace transform
Properties of the Laplace transform

@ Transformation of partial derivatives

Clu] = / u(x, Hye~Stdt = sU(x, s) — u(x, 0)
0

Llu = / Ug(x, H)e~Stdt = 2U(x, s) — su(x, 0) — uy(x, 0)
0

[e.e]

0
_ —st 4
L[ux] _/ux(x, e >'dt = axU(X, s)
0

[e.e]

82
_ —st _
L[Uxx] _/uxx(x, e >dt = 2 U(x,s)
0
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Properties of the Laplace transform
Properties of the Laplace transform

@ Convolution property:
L[f g = L[f] - L[g],

where
t t
(Fxg)(t /f (t—7)d :/f(t—T)g(T)dT
0 0

is the finite convolution of two functions f and g.

@ It is evident that
LHLI- LG} =fxg
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N T LR S Properties of the Laplace transform
Laplace transform

f(t) = L [F(s)] F(s) = L[f(1)]
1 1 17 s>0
s
at 1
2. e , §>a
s—a
3 sin (at) 2 s>o0
' s2 + a2’
4 cos (at) 5 s>0
‘ s2 + a2’
n e n
5. | t" (n = positive integer) prreg s>0
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Properties of the Laplace transform
Laplace transform (cont.)

f(t) = L~ [F(s)] F(s) = L[f(1)]

6. sinh (at) 22 s> |4
7. cosh (at) -2 s> |a

at o b
8. e? sin (bt) Gs_ag+ b2 s>a
9. e cos (bt) (s—segzibz’ s>a

|

10. tedt (s—na.v)”“’ s>a
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Properties of the Laplace transform
Laplace transform (cont.)

f(t) = LT [F(s)] F(s) = LIf(1)]
11. H(t — a) e_sas, s>0
12. H(t— a)f(t— a) e *#F(s)
13. e?f(t) F(s— a)
14. | f((t) (nth derivative) | s"F(s) — s"'f(0) — - -- — f("~1)(0)
15. f(at) ;F (2) , a>0

© Daria Apushkinskaya (UdS) PDE and BVP  lecture 8 27. November 2014 15/21



Properties of the Laplace transform
Laplace transform (cont.)

f(t)=L7[F(s)] | F(s) = LIf(1)]
16. af f(r)dr lF(s)
17. erf (t/2a) leazsz erfc (as)
18. erfc (a/(2V1)) %e—aﬁ
19. 5(t — a) esa
20. \/}t — ae®terfc (avt) \/§1+ a
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Properties of the Laplace transform
Laplace transform (cont.)

f(t) = £ ' [F(s)] F(s) = L[f(t)]
21. ;ﬁ \}g
22 2 it3 P <_i) oo
23, e <_4t> \;gea\/E
24. | —eb+eteric (aﬁ+ 2?/?) + erfc <2f/f> Sfj;i)
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Heat Conduction in a Semi Infinite Medium

Consider a deep container of liquid that is insulated on the sides.
Suppose the liquid has an initial temperature of uy and the temperature
of the air above the liquid is zero (some reference temperature).

Our goal is to find the temperature of the liquid at various depths of the
container at different values of time.

Problem 8-2
To find the function u(x, t) that satisfies

PDE: U = Uy, O<x<oo, O0<t<oo
BC: ux(0,t) — u(0,t) =0, 0<t<oo
IC: u(x,0) = o, 0<x<oo
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The Laplace Transform Solution of IBVP

Step 1. (Transformation)

@ We take the Laplace transform with respect to t-variable. We
transform the PDE and the BC - not the IC! As a result we get and

ODE in x
d2
ODE: sU(x)—up = @U(x), 0<x<o
(8.2)
: d _
BC: &U(O) = U(0)
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Step 2. (Solving the BVP for ODE)

@ The first equation in (8.2) is a second-order ODE with one BC at
x =0.

@ For physical reasons, we really have a second, implied BC that
says U(x) is bounded.

@ To solve (8.2), we first find the general solution (homogeneous +
a particular solution), which is

u
U(x) = c1eV* + coe V™ + ?O

@ Note that ¢y = 0 or else the temperature will go to infinity as x

gets large.
@ Finding ¢, from the BC at x = 0 provides
—/sx
e Up
U(x)=-— —
(x) Uo{s(\/§+1)}Jr s

© Daria Apushkinskaya (UdS) PDE and BVP  lecture 8 27. November 2014 20/21



The Laplace Transform Solution of IBVP

Step 3. (Inverse transform)
@ The last step is to find the inverse transform of U(s); that is,

u(x,t) = L7 [U(x, s)].

Using the tables we see that

u(x, t) = up — ug |erfc (x/(2V'1)) — erfc (Vi + x/(2V1))eX*!
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