# Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Jens Horn, M. Sc.



## Übungen zur Vorlesung Partielle Differentialgleichungen I (WS 2018/2019) Blatt 9

Abgabe: vor der Vorlesung am Montag, 21.1.2019.

#### Aufgabe 1.

Betrachten Sie den Differentialoperator  $L=\partial_x^2+x\partial_y^2$  auf  $\Omega=(0,\infty)\times\mathbb{R}$  und zeigen Sie, dass L

- (i) elliptisch, aber nicht gleichmäßig elliptisch auf  $\Omega$  ist,
- (ii) lokal gleichmäßig elliptisch auf  $\Omega$  ist.

#### Aufgabe 2.

Seien  $\Omega$  ein beschränktes Gebiet in  $\mathbb{R}^n$  und  $u\in C^2(\Omega)\cap C^0(\overline{\Omega})$  eine nichttriviale Lösung des Randwertproblems

$$\Delta u = \lambda u$$
 in  $\Omega$ ,  $u = 0$  auf  $\partial \Omega$ 

für ein  $\lambda \in \mathbb{R}$ . Zeigen Sie, dass  $\lambda < 0$  gilt.

#### Aufgabe 3.

Seien  $\Omega$  ein Gebiet in  $\mathbb{R}^n$ , der Differentialoperator

$$L = \sum_{i,j=1}^{n} a_{ij} \partial_{ij} + \sum_{i=1}^{n} b_i \partial_i + c, \qquad a_{ij}, b_i, c : \Omega \to \mathbb{R}$$

elliptisch auf  $\Omega$  und für  $u \in C^2(\Omega)$  gilt die Ungleichung  $Lu(x_0) > 0$  für ein  $x_0 \in \Omega$  mit  $c(x_0) = 0$ . Zeigen Sie, dass u in  $x_0$  keine lokale Maximalstelle hat.

[Hinweis: Seien A, B symmetrische  $(n \times n)$ -Matrizen. Falls A positiv definit und B negativ semidefinit ist, dann ist spur(AB) < 0.]

### Aufgabe 4.

(i) Seien  $\Omega = (-1,1)^2 \setminus \{(0,0)\}$  und

$$L = \Delta - \frac{\partial_x}{x} - \frac{\partial_y}{y}.$$

Zeigen Sie, dass es  $u,v\in C^2(\Omega)\cap C^0(\overline{\Omega})$  mit  $u\neq v$  und Lu=Lv in  $\Omega$  sowie u=v auf  $\partial\Omega$  gibt.

(ii) Seien  $\Omega = (0, 2\pi)^2$  und

$$L = \Delta + 5$$
.

Zeigen Sie, dass es  $u,v\in C^2(\Omega)\cap C^0(\overline{\Omega})$  mit  $u\neq v$  und Lu=Lv in  $\Omega$  sowie u=v auf  $\partial\Omega$  gibt.