Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Dr. Yana Kinderknecht

Übungen zur Vorlesung Partielle Differentialgleichungen I (WS 2013/2014) Blatt 1 (16 Punkte)

Abgabe: vor der Vorlesung am Montag, 28.10.2013.

Versehen Sie Ihre Lösungen mit Ihrem Namen. Mit einem (\circledast) gekennzeichnete Aufgaben werden in der Übung gemeinsam erarbeitet; die restlichen Aufgaben sind in schriftlicher Form abzugeben.

Aufgabe 1. (5 Punkte)

a) (2 Punkte) Seien $\Omega \subset \mathbb{R}^2 \setminus \{(x,y) : x = 0\}$ offen und $u \in C^2(\Omega)$. Zeigen Sie, dass nach Transformation von Ω mittels Polarkoordinaten $\Phi : (0,\infty) \times (0,2\pi) \to \mathbb{R}^2$, $(r,\theta) \mapsto (x,y) = \Phi(r,\theta)$ die Formel

$$\Delta u(x,y) = \frac{w_{\theta\theta}(r,\theta)}{r^2} + \frac{w_r(r,\theta)}{r} + w_{rr}(r,\theta)$$
 für alle $(x,y) \in \Omega$

gilt, wobei $w(r, \theta) := u(\Phi(r, \theta)) = u(x, y)$ ist.

b) (1 Punkt) Sei $\Gamma : \mathbb{R}^n \setminus \{0\} \to \mathbb{R} \ (n \geq 2)$ die Fundamentallösung der Laplace-Gleichung, gegeben durch

$$\Gamma(x) := c_n \left\{ \begin{array}{ll} |x|^{2-n}, & n > 2, \\ \log|x|, & n = 2 \end{array} \right. \quad \text{mit} \quad c_n := \left\{ \begin{array}{ll} (n(2-n)\mathcal{L}^n(B_1))^{-1}, & n > 2, \\ (2\pi)^{-1}, & n = 2, \end{array} \right.$$

wobei $\mathcal{L}^n(B_1)$) das Volumen der *n*-dimensionalen Einheitskugel B_1 ist. Zeigen Sie, dass Γ tatsächlich die Laplace-Gleichung in $\mathbb{R}^n \setminus \{0\}$ löst.

- c) Klassifizieren und lösen Sie folgende partielle Differentialgleichungen.
 - i) (1 Punkt) $4u_y + u_{xy} = 0$.
 - ii) (1 Punkt) $(1+x^2)u_x + u_y = 0$.

Aufgabe 2. (5 Punkte)

- a) (1 Punkt) Klassifizieren und lösen Sie die partielle Differentialgleichung $u_{xy}=0$.
- b) (2 Punkte) Lösen Sie die Wellengleichung in \mathbb{R}^1 :

$$u_{tt} - a^2 u_{xx} = 0 \quad \text{mit einem } a > 0.$$

Hinweis: eine Variablentransformation ist nützlich.

c) (2 Punkte) Seien $\varphi \in C^2(\mathbb{R})$ und $\psi \in C^1(\mathbb{R})$. Lösen Sie das Anfangswertproblem für die Wellengleichung in \mathbb{R}^1 :

$$\begin{cases} u_{tt}(t,x) - a^2 u_{xx}(t,x) = 0, & t > 0, \quad x \in \mathbb{R}, \\ u(0,x) = \varphi(x), & x \in \mathbb{R}, \\ u_t(0,x) = \psi(x), & x \in \mathbb{R}. \end{cases}$$

d) (*) Für welche Klassen von Anfangswerten φ , ψ wird das Anfangswertproblem korrekt gestellt?

Aufgabe 3. (⊛)

Seien $\Omega \in \mathbb{R}^n$ offen, beschränkt und mit genügend glattem Rand sowie $u \in C^2(\overline{\Omega})$. Zeigen Sie, dass für alle $\eta \in C^1_o(\Omega)$

$$\int\limits_{\Omega} \Delta u \, \eta \, dx = -\int\limits_{\Omega} \nabla u \cdot \nabla \eta \, dx$$

gilt, wobei der Punkt das euklidische Produkt von Vektoren bezeichnet.

Aufgabe 4. (4 Punkte)

Seien $\Omega \in \mathbb{C}$ eine offene Menge und $f: \Omega \to \mathbb{C}, \ f = u + iv, \ komplex \ differenzierbar$ in $\Omega,$ d.h. $f'(z) := \lim_{w \to z} \frac{f(z) - f(w)}{z - w}$ existiert für alle $z \in \Omega$.

a) (2 Punkte) Zeigen Sie, dass f im reelen Sinn (aufgefasst als Abbildung $\mathbb{R}^2 \supset \Omega \to \mathbb{R}^2$) total differenzierbar in Ω ist und die Cauchy-Riemannschen Differentialgleichungen

$$u_x(z) = v_y(z), \quad u_y(z) = -v_x(z)$$

für alle $z = x + iy \in \Omega$ gelten.

b) (2 Punkte) Seien die zweiten partiellen Ableitungen von u und v existent und stetig in Ω . Beweisen Sie, dass dann u und v harmonisch in Ω sind.

Aufgabe 5. (2 Punkte)

Seien $\Omega \in \mathbb{R}^n$ offen und $u, v \in C^k(\Omega)$ für ein $k \in \mathbb{N}$. Seien $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$, $|\alpha| := \alpha_1 + \dots + \alpha_n$ und $\alpha! := \alpha_1! \dots \alpha_n!$. Sei $\partial^{\alpha} u(x) := \frac{\partial^{|\alpha|} u}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}(x)$ für $x = (x_1, \dots, x_n) \in \Omega$. Beweisen Sie die Formel von Leibniz:

$$\partial^{\alpha}(uv) = \sum_{\beta < \alpha} C_{\alpha}^{\beta} \, \partial^{\beta} u \, \partial^{\alpha - \beta} v$$

für alle $\alpha \in \mathbb{N}_0^n$ mit $|\alpha| \le k$, wobei $C_{\alpha}^{\beta} := \frac{\alpha!}{\beta!(\alpha-\beta)!}$ ist und $\beta \le \alpha$, falls dies komponentenweise zutrifft.

Die Übungsblätter sind auch auf unserer Homepage erhältlich:

http://www.math.uni-sb.de/ag/fuchs/ag-fuchs.html/