Exercises for the Lecture

Differential Geometry
Summer Term 2020
Sheet 1

Resources: Lessons 1 - 3; Sections 1-1 - 1-4 in |Car16|

Exercise 1.

For all $t \in \mathbb{R}$, the straight line through $(0,1)$ and $(t, 0)$ cuts the unit circle $K=\{(x, y) \in$ $\left.\mathbb{R}^{2} ; x^{2}+y^{2}=1\right\}$ in exactly one point which is different to $(0,1)$ and which will be denoted by $(x(t), y(t))$.
(i) Determine the functions $x, y: \mathbb{R} \rightarrow \mathbb{R}$ and show that $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))$ is a regular parametrization of $K \backslash\{(0,1)\}$.
(ii) Calculate the arc length of the curve $\left.\alpha\right|_{[-1,1]}:[-1,1] \rightarrow \mathbb{R}^{2}, t \mapsto \alpha(t)$.

Exercise 2.

Justify that the following curves in \mathbb{R}^{3} have finite arc lengths and calculate them:
(i) $\beta:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(6 t, 3 t^{2}, t^{3}\right)$,
(ii) $\gamma:[0, \sqrt{2}] \rightarrow \mathbb{R}^{3}, t \mapsto(t, t \sin (t), t \cos (t))$.
(Hint: You can use the following identity without proving it: $\int_{0}^{s} \sqrt{1+t^{2}} \mathrm{~d} t=\frac{1}{2}\left(\sqrt{1+s^{2}} \cdot s+\operatorname{arsinh}(s)\right)$ with $s>0$.)

Exercise 3.

Reparameterize the following curves by arc length: (Hint: Remark 2 on $p .23$ in Car16 can be useful.)
(i) $\delta:(1, \infty) \rightarrow \mathbb{R}^{3}, t \mapsto e^{-t}(\cos (t), \sin (t), 1)$,
(ii) $\varepsilon:(0, \infty) \rightarrow \mathbb{R}^{3}, t \mapsto\left(e^{t}, e^{-t}, \sqrt{2} t\right)$.

Exercise 4.

Let $\alpha: I \rightarrow \mathbb{R}^{3}(I \subset \mathbb{R}$ an interval) be a regular curve, $[a, b] \subset I$ and $A=\alpha(a), B=\alpha(b)$ with $A \neq B$. Show:
(i) For each unit vector $e \in \mathbb{R}^{3}$, we have

$$
(B-A) \cdot e \leq L_{\alpha}
$$

where L_{α} is the arc length between A and B with respect to α.
(ii) The shortest arc length of any curve connecting A and B is the straight line connecting them.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves $\& 8$ surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.

