

Exercises for the Lecture Differential Geometry Summer Term 2020

Sheet 1

Submission: /

Resources: Lessons 1 – 3; Sections 1-1 – 1-4 in [Car16]

Exercise 1.

For all $t \in \mathbb{R}$, the straight line through (0,1) and (t,0) cuts the unit circle $K = \{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 1\}$ in exactly one point which is different to (0,1) and which will be denoted by (x(t), y(t)).

- (i) Determine the functions $x, y: \mathbb{R} \to \mathbb{R}$ and show that $\alpha: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (x(t), y(t))$ is a regular parametrization of $K \setminus \{(0, 1)\}$.
- (ii) Calculate the arc length of the curve $\alpha|_{[-1,1]}: [-1,1] \to \mathbb{R}^2, t \mapsto \alpha(t).$

Exercise 2.

Justify that the following curves in \mathbb{R}^3 have finite arc lengths and calculate them:

- (i) $\beta \colon [0,1] \to \mathbb{R}^3, t \mapsto (6t, 3t^2, t^3),$
- (ii) $\gamma : [0, \sqrt{2}] \to \mathbb{R}^3, t \mapsto (t, t \sin(t), t \cos(t)).$ (*Hint: You can use the following identity without proving it:* $\int_0^s \sqrt{1+t^2} dt = \frac{1}{2}(\sqrt{1+s^2} \cdot s + \operatorname{arsinh}(s))$ with s > 0.)

Exercise 3.

Reparameterize the following curves by arc length: (Hint: Remark 2 on p. 23 in [Car16] can be useful.)

- (i) $\delta: (1,\infty) \to \mathbb{R}^3, t \mapsto e^{-t}(\cos(t),\sin(t),1),$
- (ii) $\varepsilon \colon (0,\infty) \to \mathbb{R}^3, t \mapsto (e^t, e^{-t}, \sqrt{2}t).$

Exercise 4.

Let $\alpha \colon I \to \mathbb{R}^3$ $(I \subset \mathbb{R} \text{ an interval})$ be a regular curve, $[a, b] \subset I$ and $A = \alpha(a)$, $B = \alpha(b)$ with $A \neq B$. Show:

(i) For each unit vector $e \in \mathbb{R}^3$, we have

$$(B-A) \cdot e \le L_{\alpha},$$

where L_{α} is the arc length between A and B with respect to α .

(ii) The shortest arc length of any curve connecting A and B is the straight line connecting them.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves & surfaces. Revised & updated second edition. Dover Publications, Inc., Mineola, NY, 2016.