Exercises for the Lecture
 Differential Geometry

Summer Term 2020
Sheet 10
Submission:

Resources: Up to Lesson 17; Up to p. 73 in [Fuc08]; Sections 2-1-2-5 and
 Section 3-1 - 3-3 in Car16

Exercise 1.

Let $\Omega \subset \mathbb{R}^{2}$ be a domain, $w \in \Omega$, and let $X: \Omega \rightarrow \mathbb{R}^{3}$ be a parameterized surface. Show: The mapping

$$
I I I_{w}: T_{w} X \times T_{w} X \rightarrow \mathbb{R},(U, V) \mapsto S_{w}(U) \cdot S_{w}(V)
$$

is a symmetric bilinear form (third fundamental form of X) and the following relationship holds:

$$
I I I_{w}-\left(\kappa_{1}(w)+\kappa_{2}(w)\right) I I_{w}+\kappa_{1}(w) \kappa_{2}(w) I_{w} \equiv 0
$$

Here $\kappa_{1,2}(w)$ are the principal curvatures of X at w.

Exercise 2.

Show the parameter invariance of the area: Let $\Omega, \tilde{\Omega}$ be two domains, $X: \Omega \rightarrow \mathbb{R}^{3}$ a regular parameterized surface, $\varphi: \tilde{\Omega} \rightarrow \Omega$ a diffeomorphism and $\tilde{X}=X \circ \varphi$. Then

$$
\int_{\Omega}\left|X_{u}(u, v) \times X_{v}(u, v)\right| \mathrm{d} u \mathrm{~d} v=\int_{\tilde{\Omega}}\left|\tilde{X}_{\tilde{u}}(\tilde{u}, \tilde{v}) \times \tilde{X}_{\tilde{v}}(\tilde{u}, \tilde{v})\right| \mathrm{d} \tilde{u} \mathrm{~d} \tilde{v}
$$

Exercise 3.

Let $\Omega \subset \mathbb{R}^{2}$ be a domain and let $X: \Omega \rightarrow \mathbb{R}^{3}$ be a twice continuous differentiable parameterized surface. Define

$$
X^{\varepsilon}: \Omega \rightarrow \mathbb{R}^{3},(u, v) \mapsto X(u, v)+\varepsilon \varphi(u, v) N(u, v),
$$

where $\varepsilon \in \mathbb{R}, \varphi \in C_{c}^{\infty}(\Omega)$ and $N(u, v)$ is the normal vector of X in (u, v). Show: For a sufficiently small $\varepsilon_{0}>0, X^{\varepsilon}$ is a regular parameterized surface for all $\varepsilon \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)$. We call this a normal variation of X.
(Hint: It can be useful to first show the formula in Exercise 4 (i).)

Exercise 4.

Let $\Omega \subset \mathbb{R}^{2}$ be a domain. A minimal surface is a parameterized surface $X: \Omega \rightarrow \mathbb{R}^{3}$ with vanishing mean curvature $H \equiv 0$. In this exercise we want show that a minimal surface can also be characterzied via the extremality (minimum or maximum!) of the area with respect to all its normal variations (see Exercise 3).
(i) Let X^{ε} be a normal variation of X (see Exercise 3). Show that for the coefficients $\mathcal{E}^{\varepsilon}, \mathcal{F}^{\varepsilon}$ and $\mathcal{G}^{\varepsilon}$ of the first fundamental form of X^{ε} the following relationship holds:

$$
\mathcal{E}^{\varepsilon} \mathcal{G}^{\varepsilon}-\left(\mathcal{F}^{\varepsilon}\right)^{2}=\left(\mathcal{E}^{0} \mathcal{G}^{0}-\left(\mathcal{F}^{0}\right)^{2}\right)(1-4 \varepsilon \varphi H)+R,
$$

where $R=R(u, v, \varepsilon)$ with $\lim _{\varepsilon \rightarrow 0} R(u, v, \varepsilon) / \varepsilon=0$.
(ii) Conclude that for the area $\mathcal{A}(\varepsilon)=A\left(X^{\varepsilon}\right)$ the following holds:

$$
\mathcal{A}^{\prime}(0)=0 \quad \Longleftrightarrow \quad H \equiv 0
$$

i.e. $\varepsilon=0$ is a stationary point of the area functional and the area has an extremum for X if and only if the mean curvature vanishes.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

