Exercises for the Lecture
Differential Geometry

Summer Term 2020
Sheet 11
Submission:
Resources: Up to Lesson 20; Chapters 1-2 in Fuc08]; Chapters 1-3 in Car16|

Exercise 1.

(i) Show that the parametrization of the elliptic paraboloid

$$
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(u, v, u^{2}+v^{2}\right)
$$

has no asymptotic curves.
(ii) Determine the asymptotic curves of the following parametrization of the hyperbolic paraboloid

$$
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(u, v, u^{2}-v^{2}\right)
$$

Exercise 2.

(See Exercise 2 in Section 3-3 in Car16.)
Let $a, b>0$. Consider the helicloid

$$
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto(a v \cos (u), a v \sin (u), b u)
$$

(i) Show that X is a ruled surface. Are the generators asymptotic curves?
(ii) Determine the curvature lines of the surface for $a=b=1$.
(Hint:Use $\widetilde{\omega_{2}}=\operatorname{arsinh}\left(\omega_{2}\right)$.)
(iii) Show that X is a minimal surface.

Exercise 3.

(See Exercise 6 in Section 3-3 in Car16].)
(i) Let the unit sphere be parameterized by

$$
X:(0,2 \pi) \times(0, \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto(\cos (u) \sin (v), \sin (u) \sin (v), \cos (v))
$$

Calculate the geodesic curvature of all circles of latitude and longitude (u resp. v coordinate lines).
(ii) The pseudo sphere is the following regular parameterized rotation surface

$$
P^{2}: \mathbb{R} \backslash\{0\} \times \mathbb{R} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(\frac{\cos (v)}{\cosh (u)}, \frac{\sin (v)}{\cosh (u)}, u-\tanh (u)\right)
$$

Show that the pseudo sphere has constant negative Gauß curvature.

Exercise 4.

Let $\Omega \subset \mathbb{R}^{2}$ be a domain and let $X: \Omega \rightarrow \mathbb{R}^{3}$ be a regular parametrization of a surface. Show that the following statements are equivalent:
(i) $H \equiv K \equiv 0$ on Ω.
(ii) $X(\Omega)$ is a subset of a plane.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

