Prof. Dr. Martin Fuchs
Dr. Dominik Schillo

Exercises for the Lecture
Differential Geometry
Summer Term 2020
Sheet 1, Solution
Submission:

Resources: Lessons $1-3$; Sections 1-1 - 1-4 in Car16

Exercise 1.

For all $t \in \mathbb{R}$, the straight line through $(0,1)$ and $(t, 0)$ cuts the unit circle $K=\{(x, y) \in$ $\left.\mathbb{R}^{2} ; x^{2}+y^{2}=1\right\}$ in exactly one point which is different to $(0,1)$ and which will be denoted by $(x(t), y(t))$.
(i) Determine the functions $x, y: \mathbb{R} \rightarrow \mathbb{R}$ and show that $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))$ is a regular parametrization of $K \backslash\{(0,1)\}$.
(ii) Calculate the arc length of the curve $\left.\alpha\right|_{[-1,1]}:[-1,1] \rightarrow \mathbb{R}^{2}, t \mapsto \alpha(t)$.

Solution 1.

(i) Let $t \in \mathbb{R}$ and

$$
\gamma_{t}:[0,1] \rightarrow \mathbb{R}^{2}, s \mapsto(a s+b, c s+d)
$$

where $a, b, c, d \in \mathbb{R}$ such that

$$
\gamma_{t}(0)=(b, d)=(0,1) \quad \text { und } \quad \gamma_{t}(1)=(a+b, c+d)=(t, 0)
$$

and hence

$$
\gamma_{t}(s)=(t s,-s+1)
$$

for all $s \in[0,1]$. Furthermore, we have

$$
\begin{aligned}
\left|\gamma_{t}(s)\right|^{2} & =|t s|^{2}+|-s+1|^{2}=s^{2} t^{2}+(1-s)^{2}=s^{2} t^{2}+1-2 s+s^{2} \\
& =s\left(s\left(t^{2}+1\right)-2\right)+1=1
\end{aligned}
$$

if and only if

$$
s=0 \quad \text { or } \quad s=\frac{2}{t^{2}+1} .
$$

Thus we obtain

$$
x: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto \frac{2 t}{t^{2}+1}
$$

and

$$
y: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto 1-\frac{2}{t^{2}+1}=\frac{t^{2}-1}{t^{2}+1}
$$

hence

$$
\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))=\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)
$$

Since

$$
\alpha^{\prime}(t)=\frac{2}{\left(t^{2}+1\right)^{2}}\left(1-t^{2}, 2 t\right) \neq 0
$$

for all $t \in \mathbb{R}, \alpha$ is a regular parametrization.
It is left to show that $\operatorname{Im}(\alpha)=K \backslash\{(0,1)\}$. To this end, let $(\tilde{x}, \tilde{y}) \in K \backslash\{(0,1)\}$. We are looking for a $t \in \mathbb{R}$ such that

$$
(x(t), y(t))=(\tilde{x}, \tilde{y})
$$

Assume that there exists $t \in \mathbb{R}$ such that

$$
(x(t), y(t))=\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)=(\tilde{x}, \tilde{y})
$$

For $\tilde{x}=0$, i.e. $(\tilde{x}, \tilde{y})=(0,-1), t=0$ is the unique solution. For $\tilde{x} \neq 0$, the above system of equations has the unique solution

$$
t=\frac{1+\tilde{y}}{\tilde{x}}
$$

hence $\operatorname{Im}(\alpha)=K \backslash\{(0,1)\}$.
(ii) For $t \in \mathbb{R}$, since

$$
\alpha^{\prime}(t)=\frac{2}{\left(t^{2}+1\right)^{2}}\left(1-t^{2}, 2 t\right)
$$

we have

$$
\begin{aligned}
\left|\alpha^{\prime}(t)\right| & =\frac{2}{\left(t^{2}+1\right)^{2}} \sqrt{\left(t^{2}-1\right)^{2}+4 t^{2}} \\
& =\frac{2}{\left(t^{2}+1\right)^{2}} \sqrt{t^{4}-2 t^{2}+2+4 t^{2}} \\
& =\frac{2}{\left(t^{2}+1\right)^{2}} \sqrt{t^{4}+2 t^{2}+1} \\
& =\frac{2}{t^{2}+1}
\end{aligned}
$$

It follows that

$$
\int_{-1}^{1}\left|\alpha^{\prime}(t)\right| \mathrm{d} t=2 \int_{-1}^{1} \frac{1}{t^{2}+1} \mathrm{~d} t=2[\arctan (t)]_{-1}^{1}=\pi
$$

Exercise 2.

Justify that the following curves in \mathbb{R}^{3} have finite arc lengths and calculate them:
(i) $\beta:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(6 t, 3 t^{2}, t^{3}\right)$,
(ii) $\gamma:[0, \sqrt{2}] \rightarrow \mathbb{R}^{3}, t \mapsto(t, t \sin (t), t \cos (t))$.
(Hint: You can use the following identity without proving it: $\int_{0}^{s} \sqrt{1+t^{2}} \mathrm{~d} t=\frac{1}{2}\left(\sqrt{1+s^{2}} \cdot s+\operatorname{arsinh}(s)\right)$ with $s>0$.)

Solution 2.

(i) We have

$$
\beta^{\prime}(t)=\left(6,6 t, 3 t^{2}\right)=3\left(2,2 t, t^{2}\right)
$$

for all $t \in[0,1]$ and hence

$$
\left|\beta^{\prime}(t)\right|=3 \sqrt{4+4 t^{2}+t^{4}}=3\left(2+t^{2}\right)
$$

for all $t \in[0,1]$. Therefore, we obtain that

$$
\int_{0}^{1}\left|\beta^{\prime}(t)\right| \mathrm{d} t=3 \int_{0}^{1} 2+t^{2} \mathrm{~d} t=3\left[2 t+\frac{1}{3} t^{3}\right]_{0}^{1}=7
$$

(ii) We have

$$
\gamma^{\prime}(t)=(1, \sin (t)+t \cos (t), \cos (t)-t \sin (t))
$$

for all $t \in[0, \sqrt{2}]$ and hence

$$
\begin{aligned}
\left|\gamma^{\prime}(t)\right|^{2}= & 1+(\sin (t)+t \cos (t))^{2}+(\cos (t)-t \sin (t))^{2} \\
= & 1+\sin (t)^{2}+2 \sin (t) \cos (t) t+(t \cos (t))^{2}+\cos (t)^{2} \\
& -2 t \cos (t) \sin (t)+(t \sin (t))^{2} \\
= & 2+t^{2} \\
= & 2\left(1+\left(\frac{t}{\sqrt{2}}\right)^{2}\right)
\end{aligned}
$$

for all $t \in[0, \sqrt{2}]$. Using the hint, we obtain

$$
\begin{aligned}
\int_{0}^{\sqrt{2}}\left|\gamma^{\prime}(t)\right| \mathrm{d} t & =\sqrt{2} \int_{0}^{\sqrt{2}} \sqrt{1+\left(\frac{t}{\sqrt{2}}\right)^{2}} \mathrm{~d} t \\
& =2 \int_{0}^{1} \sqrt{1+t^{2}} \mathrm{~d} t \\
& =\sqrt{2}+\operatorname{arsinh}(1) .
\end{aligned}
$$

Exercise 3.

Reparameterize the following curves by arc length: (Hint: Remark 2 on p. 23 in Car16] can be useful.)
(i) $\delta:(1, \infty) \rightarrow \mathbb{R}^{3}, t \mapsto e^{-t}(\cos (t), \sin (t), 1)$,
(ii) $\varepsilon:(0, \infty) \rightarrow \mathbb{R}^{3}, t \mapsto\left(e^{t}, e^{-t}, \sqrt{2} t\right)$.

Solution 3.

(i) We have

$$
\begin{aligned}
\delta^{\prime}(t) & =-e^{-t}(\cos (t), \sin (t), 1)+e^{-t}(-\sin (t), \cos (t), 0) \\
& =e^{-t}(-\cos (t)-\sin (t), \cos (t)-\sin (t),-1)
\end{aligned}
$$

for all $t \in(1, \infty)$ and hence

$$
\left|\delta^{\prime}(t)\right|=e^{-t} \sqrt{(\cos (t)+\sin (t))^{2}+(\cos (t)-\sin (t))^{2}+1}=\sqrt{3} e^{-t}
$$

for all $t \in(1, \infty)$. Therefore we obtain

$$
\int_{1}^{t}\left|\delta^{\prime}(\tau)\right| \mathrm{d} \tau=\sqrt{3}\left[-e^{-\tau}\right]_{1}^{t}=\sqrt{3}\left(-e^{-t}+e^{-1}\right)
$$

for all $t \in(1, \infty)$ and finally

$$
s:(1, \infty) \rightarrow \mathbb{R}, t \mapsto \int_{1}^{t}\left|\delta^{\prime}(\tau)\right| \mathrm{d} \tau=\sqrt{3}\left(-e^{-t}+e^{-1}\right)
$$

The inverse function of s restricted to its image is given by

$$
\varphi=s^{-1}:\left(0, \frac{\sqrt{3}}{e}\right) \rightarrow(1, \infty), t \mapsto-\ln \left(-\left(\frac{t}{\sqrt{3}}-e^{-1}\right)\right) .
$$

Therefore,

$$
\bar{\delta}:\left(0, \frac{\sqrt{3}}{e}\right) \rightarrow \mathbb{R}^{3}, t \mapsto \delta(\varphi(t))
$$

is the desired reparametrization by arc length.
(ii) We have

$$
\varepsilon^{\prime}(t)=\left(e^{t},-e^{-t}, \sqrt{2}\right)
$$

for all $t \in(0, \infty)$ and hence

$$
\left|\varepsilon^{\prime}(t)\right|^{2}=e^{2 t}+e^{-2 t}+2=e^{-2 t}\left(e^{4 t}+2 e^{2 t}+1\right)=e^{-2 t}\left(e^{2 t}+1\right)^{2}=\left(e^{t}+e^{-t}\right)^{2}
$$

Therefore we obtain

$$
\int_{0}^{t}\left|\varepsilon^{\prime}(\tau)\right| \mathrm{d} \tau=\int_{0}^{t} e^{\tau}+e^{-\tau} \mathrm{d} \tau=\left[e^{\tau}-e^{-\tau}\right]_{0}^{t}=2 \sinh (t)
$$

for all $t \in(0, \infty)$ and finally

$$
s:(0, \infty) \rightarrow(0, \infty), t \mapsto \int_{0}^{t}\left|\varepsilon^{\prime}(\tau)\right| \mathrm{d} \tau=2 \sinh (t)
$$

The inverse function of s restricted to its image is given by

$$
\varphi=s^{-1}:(0, \infty) \rightarrow(0, \infty), t \mapsto \operatorname{arsinh}\left(\frac{t}{2}\right)
$$

Therefore,

$$
\bar{\varepsilon}:(0, \infty) \rightarrow \mathbb{R}^{3}, t \mapsto \varepsilon(\varphi(t))
$$

is the desired reparametrization by arc length.

Exercise 4.

Let $\alpha: I \rightarrow \mathbb{R}^{3}(I \subset \mathbb{R}$ an interval) be a regular curve, $[a, b] \subset I$ and $A=\alpha(a), B=\alpha(b)$ with $A \neq B$. Show:
(i) For each unit vector $e \in \mathbb{R}^{3}$, we have

$$
(B-A) \cdot e \leq L_{\alpha},
$$

where L_{α} is the arc length between A and B with respect to α.
(ii) The shortest arc length of any curve connecting A and B is the straight line connecting them.

Solution 4.

(i) Let $e \in \mathbb{R}^{3}$ be a unit vector. By the mean value theorem, we have

$$
\alpha(b)-\alpha(a)=\left(\int_{0}^{1} \alpha^{\prime}(a+t(b-a)) \mathrm{d} t\right)(b-a)=\int_{a}^{b} \alpha^{\prime}(t) \mathrm{d} t .
$$

Using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
(B-A) \cdot e & =(\alpha(b)-\alpha(a)) \cdot e=\left(\int_{a}^{b} \alpha^{\prime}(t) \mathrm{d} t\right) \cdot e \leq\left|\int_{a}^{b} \alpha^{\prime}(t) \mathrm{d} t \cdot e\right| \\
& \leq\left|\int_{a}^{b} \alpha^{\prime}(t) \mathrm{d} t\right||e| \leq \int_{a}^{b}\left|\alpha^{\prime}(t)\right| \mathrm{d} t=L_{\alpha} .
\end{aligned}
$$

(ii) Let

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{2}, t \mapsto \alpha(a)+t(\alpha(b)-\alpha(a))
$$

and

$$
e=\frac{\alpha(b)-\alpha(a)}{|\alpha(b)-\alpha(a)|}
$$

Then we have

$$
L_{\gamma}=|\alpha(b)-\alpha(a)|=(\alpha(b)-\alpha(a)) \cdot e=(B-A) \cdot e \leq L_{\alpha}
$$

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves $\&$ surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.

